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Does tubulin phosphorylation correlate with cell death in plant 
cells?
Alla Yemets*, Yarina Sheremet and Yaroslav B Blume

Address: Department of Genomics and Biotechnology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of 
Ukraine, Zabolotnogo str., 148, Kiev, 03143, Ukraine

Email: Alla Yemets* - alyemets@univ.kiev.ua

* Corresponding author    

Background
Microtubules are necessary for a wide spectrum of cellular
functions, which include cell division, intracellular trans-
port, organelle positioning and generating of cell polarity.
The major component of microtubules is tubulin het-
erodimeric protein which is consist of two subunits: α-
and β-tubulin. Both tubulin subunits can be extensively
altered by post-translational modifications, including
detyrosination/tyrosination, acetylation/deacetylation,
polyglutamylation, polyglycylation, and phosphoryla-
tion. As for the different tubulin isotypes, the functional-
ity of the post-translational modifications is still a matter
of debate. Although, it is known that some of them are
associated with stable/dynamic populations of microtu-
bules, while others seem to influence the binding of
motor proteins [1]. One of post-translational modifica-
tions, tubulin phosphorylation, is not a widely observed
and its precise function is unknown both in animal and
plant cells.

It was shown recently that animal tubulin can be phos-
phorylated by different systems of cyclic nucleotide-
dependent (cAMP- and cGMP-dependent) protein
kinases, Ca2+-dependent protein kinases (including Ca2+-
calmodulin-dependent and Ca2+-dependent, phospholi-
pid-stimulated types of enzymes), casein kinases and tyro-
sine kinases, too [2,3]. The combined data demonstrate
that plant tubulin can also undergo extensive phosphor-
ylation by different types of protein kinases and that the
phosphorylation on serine\threonine as well as at tyrosine
residues can participate in the generation of high level of
polymorphism of plant tubulin [4]. It is interesting to
establish a functional role of this tubulin modification as
phosphorylation is a universal post-translational modifi-

cation which is typical for most of the proteins. The effects
of different activators and inhibitors of protein kinases on
microtubule dynamics and cell cycle progression in plan
cells are present in this report.

Materials and methods
Two plant lines, Arabidopsis thaliana [5] and tobacco BY-2
cell culture [6] (kindly handed over by Prof. J.-P. Verbelen,
University of Antwerp, Belgium) both expressing GFP-
tubulin as well as A. thaliana and Nicotiana tabacum wild
types were used in this research. GFP-labeled microtu-
bules in A. thaliana and BY-2 cells were analyzed by con-
focal laser scanning microscopy.

The root tips of 3-day old Allium cepa seedlings were also
used in this study. The primary mouse monoclonal anti-
bodies TU-01 (against α-tubulin) and TU-06 (against β-
tubulin) (kindly provided by Drs. V. Viklicky and P.
Draber, Institute of Molecular Genetics, Prague, Czech
Republic) were used for visualisation of microtubules in
onion meristematic root tip cells by immunofluorescence
microscopy. FITC-conjugated anti-mouse antibody
(Sigma, USA) was used as a secondary one. The fixation
and staining of microtubules by antibodies were per-
formed as described by us early [7].

As regulators of protein kinases, dibutyryl-cAMP (Serva,
Germany) in combination with ATP, polymyxin B (Serva,
Germany), trifluoperazine (Serva, Germany) and okadaic
acid (Sigma, USA) were used.

Results
For more detailed analysis of the functional role of tubu-
lin phosphorylation in plant cells several specific inhibi-
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tors and activators of different types of protein kinases
were used in our research. Dibutyryl-cAMP (10 µM in
combination with 100 µM ATP) as an activator of cAMP-
dependent phosphorylation, polymyxin B (5 mM) as an
inhibitors of the protein kinase C, trifluoperazine (5
mM), as an inhibitor of the Ca2+-calmodulin-dependent
protein kinase, and okadaic acid (inhibitor of protein
phosphatase type 2A, PP2A), in concentration 1–30 nM,
were investigated with regard to their ability to affect
microtubule dynamics and to induce structural changes of
microtubules. The root tips of seedlings were treated with
each of these compounds. The effects of these regulators
of protein kinases on the structural reorganisation of
interphase and mitotic microtubules were studied after
exposure of plant material in the presence of activator or
inhibitor during 6, 12 and 24 h.

Immunofluorescence analysis of microtubules showed
that treatment by cAMP causes the disruption of both
interphase and mitotic microtubules and accumulation of
depolymerised tubulin around the nuclei in the cells. The
treatment of onion cells by trifluoperazine caused the
reorganization of microtubules and change of their spatial
organization from a transverse to a longitudinal orienta-
tion and formation of thick longitudinal arrays. The treat-
ment of A. cepa cells with polymyxin B caused the same
effects on microtubular organisation as trifluoperazine.

Confocal laser scanning and light microscopy of A. thal-
iana and N. tabacum cells revealed that okadaic acid
arrested cell growth, alter cell morphology, and affected
the organization of microtubules.

Conclusion
It was reviewed by us that plant tubulin can undergo
extensive phosphorylation by different types of protein
kinases, and that tubulin phosphorylation participates in
regulation of the plant cell cycle [4]. Many studies shown
that different protein phosphatase inhibitors effect micro-
tubules in animal and plant cells. For instance, it was
shown that the treatment of Tradescantia stamen hair cells
with okadaic acid and other protein phosphatase inhibi-
tors caused changes of the metaphase transit times and the
pattern of sister chromatid separation [8]. The treatment
of Arabidopsis shoots with inhibitors of serine/threonine
protein phosphatases (okadaic acid or calyculin A) pro-
voked the destruction of root morphology, that can be
explained by the influence of these compounds on corti-
cal microtubules function [9]. The same authors later
proved that phosphatase inhibitors as well as protein
kinase inhibitors destroy not only root morphology but
that cortical microtubules also become disorganized after
exposure to some types of inhibitors [10]. In particular,
these effects were characteristic of protein phosphatases
such as calyculin A and cantaridin. The protein kinase

inhibitor staurosporine also had similar effect in plant
cells [11-13]. The disruption of microtubules was found
recently after calyculin A and okadaic acid treatment in
Lilium [14]. Thus, literature indicates that phosphoryla-
tion and dephosphorylation represent a part of the molec-
ular mechanism responsible for both the organization of
the cortical microtubular networks and of mitotic func-
tion.

Studies on animal cells clearly demonstrated that okadaic
acid and other protein phosphatase inhibitors induce
mitotic arrest [15,16], premature chromosome condensa-
tion [17,18], microtubule disassembly [18,19], DNA frag-
mentation [20,21] and apoptosis [16,17,20,21].

Summarizing our data obtained we can conclude that the
changes in the spatial organisation of microtubules after
treatment by cAMP and the protein kinase inhibitors lead
to disturbances of cell cycle progression and it is most
likely to launch of the cell death program in plant cells.
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