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Abstract

Background: Guar (Cyamopsis tetragonoloba (L.) Taub.), a short-day plant, is an economically valuable legume crop.
Seeds of guar serve as a source of galactomannan polysaccharide, known as guar gum, which is in demand in the
gas and oil industries. The rapid and complete maturation of guar seeds depends on the flowering time of a
particular genotype. It is known that flowering in guar is controlled by several gene systems. However, no
information about the process and mechanisms that trigger flowering in guar on the molecular and biochemical
levels was previously reported. The aim of the study was to investigate the metabolic landscape underlying
transition to the flowering in guar using GC-MS-metabolomic analysis.

Results: 82 diverse guar genotypes (each in 8 replicates) from the VIR collection were grown under experimental
conditions of high humidity and long photoperiod. In the stress environment some guar genotypes turned to
flowering early (41 ± 1,8 days from the first true leaf appearance) while for others the serious delay of flowering (up
to 95 ± 1,7 days) was observed. A total of 244 metabolites were detected by GC-MS analysis on the third true leaves
stage of 82 guar genotypes. Among them some molecules were associated with the transition of the guar plants to
flowering. Clear discrimination was observed in metabolomic profiles of two groups of «early flowering» and
«delayed flowering» plants, with 65 metabolites having a significantly higher abundance in early flowering
genotypes. Among them 7 key molecules were identified by S-plot, as potential biomarkers discriminating of «early
flowering» and «delayed flowering» guar genotypes.

Conclusions: The metabolomic landscape accompanying transition to flowering in guar was firstly described. The
results obtained can be used in subsequent genomic research for identifying metabolite-gene associations and
revealing genes responsible for the onset of flowering and photoperiod sensitivity of guar. In addition, the detected
key metabolites associated with flowering of guar can be employed as biomarkers allowing rapid screening of
breeding material for the potentially early flowering genotypes.
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Background
Guar is a short-day legume crop that recently became
popular since its seeds serve as is a source of galacto-
mannan polysaccharide (the guar gum), which is used in
many industries including gas and oil production. Guar
tolerates high temperatures and dry conditions and it is
well adapted to arid and semi-arid climate of India and
Pakistan [1]. Several attempts have been made to intro-
duce the economically valuable legume crop to the coun-
tries of the higher geographical latitudes. The main
problem was repeatedly reported when introducing guar
to the new habitats - an excessive length of the crop cycle
creating problems at harvest (e.g. [2]). For US the growing
season of guar was reported from 60 to 90 days (determin-
ate varieties) to 120–150 days (indeterminate varieties),
and only the earliest-maturing guar varieties are recom-
mended for production in Wisconsin and Minnesota [1].
Besides the determinate and indeterminate growth habits,
a particular daylight length significantly affects the onset
of flowering in guar [3]. In turn, day-neutral guar geno-
types usually mature earlier than those with high sensitiv-
ity to the length of photoperiod [4].
Elucidation of the genetic control of the onset of flower-

ing in guar can significantly benefit from the use of metab-
olite profiling as a new tool of functional genomics. There
are several reports evidenced that each plant genotype
possesses a distinct metabolic profile (e.g. [5–7]. The
metabolomic profiling has the potential not only to pro-
vide deeper insight into complex regulatory processes, but
also to determine phenotype directly [5].
Metabolic analysis coupled with genomic studies have

been repeatedly carried out in many plant species. For ex-
ample, using the metabolic approach, genetic factors re-
lated to pest resistance in carrots [8], tomatoes [9] and to
salt stress of barley [10] were determined. Several studies
have been devoted to the search for molecular mecha-
nisms that significantly reduce the sensitivity of crops to
high temperature, drought, salinization, high metal con-
tent, and some genes underlying resistance to the abiotic
stressors have been revealed [11–14]. For guar, however,
the metabolic approach was used so far only to study the
antimicrobial activity of seeds [15, 16], seeds qualitative
composition [17] and seeds medicinal properties [18]. Out
of the “omics” approaches, transcriptome profiling of leaf
tissues of two guar varieties has recently been reported,
providing information on more than 62 thousand uni-
genes [19]. Employment of metabolomic profiling as an
additional tool for functional genomics could provide a
new understanding of metabolism of plants and its inter-
action with the environment [20, 21].
The aim of the study was to analyze the metabolic land-

scape underlying transition of the various C. tetragonoloba
genotypes to flowering under long daylight conditions,
which are stressful for this species of short-day plants. To

achieve the task, we conducted a six-month vegetation ex-
periment to grow 96 different guar genotypes in a green-
house, with a natural daylight length corresponding to the
geographical latitude of St. Petersburg (~ 60°N). We ex-
amined how different genotypes were segregating by their
onset of flowering, depending on their individual sensitiv-
ity to the photoperiod. At the same time, for each plant,
we performed metabolomic profiling of tissues of the third
true leaf - the developmental stage that precedes the for-
mation of the flowering bud.

Results
Variation of flowering time among the different guar
genotypes at the long photoperiod under greenhouse
conditions
Guar – is a short day plant, which means that flowering
of guar is accelerated by daylight length shorter than the
critical photoperiod [3]. The optimal length of the
photoperiod during the growing season of guar varies
from 12.7 h to 13.8 h, as in Jodhpur province (India),
where this crop is widely cultivated. In our experiment
96 guar genotypes, each presented by 8 individuals, have
been grown under conditions of the greenhouse of the
Pushkin branch of VIR during six months (May – October)
at the photoperiod that is natural to the latitude of St.
Petersburg (59°53′39″N). The experiment allowed us to
monitor the reaction of different genotypes of the short-day
crop to a gradually decreasing length of daylight: from the
maximum (~ 19 h) on the day of the summer solstice, to a
relatively short (11 h) in the first decade of October [4]. We
had an opportunity to observe how the guar plants one by
one passed to flowering as soon as the photoperiod reached
a certain threshold level specific for a particular genotype.
This allowed us to divide all the plants into groups accord-
ing to their dates of transition to the stage of floral bud
formation.
Out of 96 guar lines in the experiment, only 82

successfully passed to flowering and were subjected to
metabolomic profiling. Among them 30 genotypes have
formed the floral buds early enough (days from the
appearance of the first true leaf up to first floral bud =
41 ± 1.8, mean ± SE). For the other 52 photoperiod-
sensitive genotypes, the prolonged daylight caused obsta-
cles to the transition to a flowering program, which led
to a strong delay in the formation of floral buds (95 ±
1.7, mean ± SE) [4]. We investigated metabolomic pro-
files of tissues of the third true leaves for plants from the
two contrast groups of «early flowering» and «delayed
flowering» guar genotypes (Additional file 1).

GC-MS-metabolomic analysis of the early and delayed
flowering guar genotypes
GC-MS analysis was conducted for 82 guar genotypes,
each genotype in 4–6 biological replications. In order to
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get an insight into the technical reproducibility, at least
3 technical replicates for 3 biological replications of each
line were examined. In total, 244 valid peaks were de-
tected and semi quantified for the whole population.
Based on GMD and NIST library 105 metabolites were
identified including amino acids, sugars, glycosides and
polyols, flavonoids, fatty acids and organic acids.
First, we checked whether the concentration of metab-

olites does not vary significantly among biological repli-
cations of the same sample using the relative standard
deviation (RSD) approach. The value of RSD between
biological replications of each line in early flowering
group as well as in delayed flowering group did not ex-
ceed 20% (Additional file 2: Table S1, Fig. S1). Thus, the
biological variability seen between genetically identical
plants grown under identical conditions in our experi-
ment was comparable, or even minor with those re-
ported earlier (e.g. [5]). The technical replicates showed
even lower variation: the mean of RSD, estimated for
244 metabolites, was 9% ± 5%, confirming that variability

due to the methodology of experiment is minor com-
pared to biological differences.
The PCA (principal component analysis) score plot of

the 244 metabolic profiles showed two clearly separated
clusters of 30 early and 52 delayed flowering plants
(Fig. 1). The first component, responsible for the split-
ting of the whole sample of 82 genotypes into two
groups, explains 50.3% of variability.
To define the metabolites that make the most signifi-

cant contribution to the differentiation of guar geno-
types with early and delayed flowering, we performed
the t-test, which revealed 65 key metabolites (FDR value
< 0.01), the concentration of those varied significantly
between the two groups. Next, we cluster 82 guar geno-
types according to the 65 metabolite profiles using a
heatmap. As expected, the heatmap revealed that the
«early flowering» and «delayed flowering» genotypes
were assigned to two separated clusters (Fig. 2). There
were few exceptions: genotypes with ID 4, 13, 43 previ-
ously recognized as “delayed flowering plants” were

Fig. 1 The PCA score plot based on concentrations of 244 metabolites in the sample of 82 guar genotypes. Two groups of «early flowering» and
«delayed flowering» genotypes are marked by green and red correspondingly
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placed within the early flowering group. In fact, ID 43
metabolome profile looks identical to those in delayed
flowering group (Fig. 2). Plants with ID 4 and ID 13
were slightly affected by pathogens after picking sample
leaves, so they could be phenotyped incorrectly due to
missed first floral buds.
Several metabolites with the higher relative concentra-

tion were identified in the early flowering genotypes,

among them 2 polyols, 8 sugars, 2 glycosides, 5 organic
acids, 1 flavonoid, 1 fatty acid and 4 unidentified mole-
cules (Fig. 2, cluster 1). Other group of metabolites
showed the higher relative concentration in plants with
delayed flowering (2 polyols, 20 sugars, 1 glycosides, 6
organic acids, 5 amino acids, 8 unidentified) (Fig. 2, clus-
ter 2). The detailed information about the 65 metabo-
lites, that were significantly different in concentrations

Fig. 2 Heatmap of 65 metabolites, that were significantly different in concentrations between early (green) and delayed flowering (red) plants.
Colors in each row reflect logarithm of ratio of the concentration of a metabolite in the particular genotype to the concentration of the
metabolite averaged across the whole sample of 82 genotypes. The light blue boxes indicate the concentration of metabolites that are is less
than the mean, and the red boxes denote concentration values that are greater than mean. The darker the color is, the larger the difference
there is from the mean value
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between early and delayed flowering plants is shown in
Additional file 3.
Remarkably, not only genotypes that showed clear

phenotypic distinction were recognized by the clustering
approach, but also metabolites that belong to the same
metabolite class showed the correlated variation on the
heatmap. For example, the concentration of amino acids
(glutamine, threonine, valine, leucine, serine) varied cor-
respondingly in the sample of guar plants. There are also
at least two clusters that combined only sugar metabolic
profiles (Fig. 2).
Next, an S-plot was generated to further identify the

statistically significant and potentially biochemically sig-
nificant metabolites (Fig. 3). On the left-hand side of the
S-plot, 7 metabolites with strong model contribution and
high statistical reliability are highlighted as potential bio-
markers associated with the rapid transition to flowering
of guar plants: chiro-inositol (6TMS (Trimethylsilyl)) RI

1953 (p cov = − 12.56, pcorr = − 0.85), myo-inositol (6TMS)
RI 2088 (p cov = − 11.97, pcorr = − 0.84), unidentified glyco-
side RI 2311 (p cov = − 13.03, pcorr = − 0.85), tetronic acid
(TMS) RI 2115 (p cov = − 11.74, pcorr = − 0.84), cinnamic
acid, 3,4-dihydroxy (3TMS) RI 2134 (p cov = − 12.80,
pcorr = − 0.84), unidentified metabolite RI 2358 (p cov = −
12.41, pcorr = − 0.83), liquiritigenin RI 2437 (p cov = −
11.62, pcorr = − 0.84). Those molecules contributed mostly
to the metabolome’s discriminations between early and
delayed flowering guar plants growing under stressful con-
ditions of prolonged photoperiod.
Figure 4 demonstrates Log normalized relative con-

centration of 7 key metabolites in groups of early and
delayed flowering guar genotypes. Noticeably, all the 7
potential biomarkers have the significantly higher con-
centration in leaf tissues of the plants that are ready for
flowering (the early flowering genotypes), suggesting the
activation of the certain biochemical pathways preceding

Fig. 3 S-plot with 7 highlighted potential biomarkers discriminating metabolomes of guar plants with early and delayed onset of flowering. The
x-axis, p (cov), in figure is a visualization of the contribution (covariance) to the module variables, and the y-axis, p(corr), in figure is a visualization
og the reliability (correlation) of the module
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(or accompanying) the onset of flowering. Thus, a high
concentration of these key molecules in the tissue of the
third leaf of the guar plant indicates the upcoming flow-
ering, while a low concentration of the molecules in
these tissues means a delay in flowering, at least for the
next few weeks.

Discussion
Metabolome profiling can be employed for the detection
of the key molecules and molecular mechanisms, that
underlie the phenotype response to the biotic and abi-
otic stresses [22, 23]. When metabolome changes are in-
vestigated as a response to the stressful environmental
conditions, it becomes possible both to compare the me-
tabolite reaction of different genotypes and to under-
stand the basics of plasticity and adaptation of the
genotype to the particular stressor [22, 24, 25].
Photoperiod is the one of the most important biological

factors regulating the development of plants. Changes of
the daylight length serves as a signal for initiating various

reactions in a plant organism, including flowering or the
cessation of vegetation in the end of growing season. The
metabolic changes that occur when plants grow at differ-
ent daylight hours have been investigated by Goodacre
et al. [26]. Using ESI-MS profiling of Pharbitis leaves ex-
tracts followed by discriminant analysis, the authors
showed the ability to recognize plants that were grown at
different photoperiods by their metabolic profiles.
In our study the metabolic response of different guar

genotypes to the stress factor – prolonged photoperiod
that impedes the transition to flowering in this short-day
plant species – was investigated. We revealed that vari-
ous guar genotypes differentiating by their photoperiod
sensitivity, segregated into the early and delayed flower-
ing groups and showed distinct metabolomic profiles. Fi-
nally, we were able to describe the metabolic landscape
that accompany the timely flowering in early flowering
guar genotypes.
Although the metabolomic profiling using GC Mass

Spectrometry (GC-MS) does not allow to detect the

Fig. 4 The boxplot of log normalized relative concentration of biomarkers associated with the rapid transition to flowering in guar plants,
identified by S-plot. The green and red bars represent group of early (E) and delayed (D) flowering genotypes respectively. Log normalized
relative concentration of the two groups of: a – chiro-inositol RI 1953; b - myo-inositol RI 2088; unidentified glycoside RI 2311; d - tetronic acid RI
2115; e - cinnamic acid, 3,4-dihydroxy RI 2134; f – liquiritigenin RI 2437; g - unidentified metabolite RI 2364

Arkhimandritova et al. BMC Plant Biology          (2020) 20:291 Page 6 of 10



entire set of metabolites presented in the examined leaf
tissue [27], at least 65 metabolites were detected show-
ing significantly different concentrations in leaves of the
early and delayed flowering guar genotypes. Among
them 7 key molecules with the highest concentrations in
leaves of early flowering plants could be used as bio-
markers for searching guar genotypes that can switch to
flowering in time even under stressful conditions of a
long photoperiod. That corresponds to the previous re-
ports that diagnostics of a specific biological state of an
organism is one of the greatest possibilities provided by
metabolomic profiling [28].
Of the 7 key metabolites, the increased concentrations

of which in leaf tissues of guar plants indicate the up-
coming flowering, there were two inositol isomers. Inosi-
tol and its derivatives are crucial for development and
signaling in plants, performing essential function as
either metabolic mediators or participating in various
signaling pathways in response to stress, hormones, and
nutrients, by transcriptional regulation of the stimuli-
responsive genes [29]. Myo-inositol was reported as a
central component in plant cellular processes including
signal transduction, stress response, cell wall biogenesis,
growth regulation, osmo-tolerance, membrane traffick-
ing [30]. Important role of inositol for the early stage of
embryogenesis in plants was also described. Hence, in
Arabidopsis thaliana, RNA-i induced mutations of myo-
inositol phosphate synthase (MIPS) - the key gene for
inositol biosynthesis – lead to embryo abortion [31].
Since guar is self-pollinated plant, and embryogenesis
often begins in unopened flower [32] it can be assumed
that a sufficient concentration of inositol in the plant tis-
sues is a prerequisite for the floral bud formation, since
the early embryo will require a guaranteed initial inositol
supply for its normal development.
One of the key metabolite was attributed to flavanone

liquiritigenin (Additional file 3). For legumes, up to sev-
eral tens of different flavonoids were reported [33, 34],
among them dihydroxyflavanone liquiritigenin was isolated
from Glycyrrhizae uralensis Fisch. ex DC e.g. [35, 36].
Flavonoids have been recently suggested as effective en-
dogenous regulators of auxin movement, thus behaving as
developmental regulators in plants [37]. Therefore, we can
assume the role of liquiquirithigenin in stress-induced mor-
phogenic reactions of guar plants.
The detected 65 metabolites, which are highly import-

ant for transition to flowering in guar, combine 5 amino
acids, 11 organic acids, 28 sugars, 3 glycosides, 4 polyols,
1 flavonoid, 1 fatty acid and 12 unknown metabolites.
Significant differences (FDR value < 0.01) in their con-
centrations between early and delayed flowering plants
affect several pathways according to the KEGG database:
valine, leucine and isoleucine biosynthesis; glycerolipid
metabolism; glycine, serine and threonine metabolism;

D-glutamine and D-glutamate metabolism; N-, O-glycan
biosynthesis; gluconeogenesis; pentose phosphate pathway;
nucleotide sugar biosynthesis, galactose degradation; gly-
colysis; ascorbate biosynthesis; trehalose biosynthesis;
galactose degradation; glycogen biosynthesis; inositol phos-
phate metabolism; glycosylphosphatidylinositol (GPI)-an-
chor biosynthesis; phosphatidylinositol signaling system;
trans-cinnamate degradation and linoleic acid metabolism.
Since the metabolome is the end result of numerous

biochemical pathways, one should consider that the ef-
fective running of these pathways depends on the corre-
sponding enzymes, which, in turn, are encoded by genes.
Metabolites’ variation can be considered as the inherited
trait, thus, metabolomic profiling is employed in genetic
studies [38–40]. There are several reports about the
QTL mapping of genes responsible for metabolites’ vari-
ation [41–43]. Likewise, our study opens up the poten-
tial for searching genetic loci associated with guar plant
flowering via detecting of genes involved in the biosyn-
thesis of the key identified metabolites. This becomes
possible due to combining the capabilities of GC-MS
with the latest advances in bioinformatics [22, 23], which
provide additional opportunities for functional genetics.

Conclusion
The metabolomic landscape accompanying transition to
flowering in guar was firstly described. Under the stress-
ful long daylight (17–18 h) conditions those plants which
are ready to switch to flowering show the metabolome
profile different from that in plants with delayed flower-
ing in concentrations of at least 65 metabolites. In par-
ticular, the onset of flowering in guar is associated with
a dramatic increase of concentrations of 7 key metabo-
lites: chiro-inositol (RI 1953), myo-inositol (RI 2088),
tetronic acid (RI 2115), cinnamic acid, 3,4-dihydroxy (RI
2134), unidentified glycoside (2311), liquiritigenin (RI
2437) and unidentified metabolite (RI 2364). The higher
concentrations of those metabolites can be detected in
tissues of the third true leaf – the developmental stage
that precede first floral bud appearance. These molecules
can be employed as biomarkers for the rapid screening
of breeding material to reveal the potentially early flow-
ering guar genotypes on a stage of the third true leaf.
That could assist breeding of new guar varieties that are
more adapted for cultivation of the short-day species in
the countries with prolonged photoperiod.

Methods
Study design and sample collection
96 guar genotypes of different geographic origin from
the VIR collection were selected for the study. In this
sample the local varieties from India, known cultivars
from USA (Kinman, Lewis, Santa Cruz), as well as re-
cently developed varieties from Russia (Vavilovskij 130,
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Vector, Sinus) were presented (Additional file 4). In
2017 the selected 96 guar genotypes were propagated in
the Kuban experimental station of VIR (Krasnodar,
Russia). Seed reproduction was collected from the each
of 96 genotypes individually. In 2018, 8 seeds of each
genotype were sown in soil in pots in the greenhouse of
Pushkin branch of VIR (St. Petersburg region, 59°53′39″
N) where the plants were grown in the equal conditions
of light, humidity and temperature (Additional file 5).
During the experiment, the plants were not exposed to
any agro-biological treatments.
For all the plants the date of appearance of seedlings

(germination), the date of appearance of the first true
leaf and the date of appearance of the first flower were
recorded, after that the rate of the transition to the gen-
erative phase were calculated for each genotype. As pre-
viously reported, the genotype was recorded as “early
flowering” if it turned to flowering within 41 ± 1,8 from
the first true leaf appearance. Correspondingly, a geno-
type was assigned to the “delayed flowering” group if it
switched to flowering late (after 95 ± 1,7 days) [4].
Since each of 96 genotype was represented by 8 plants,

for GS-MC-metabolomic analysis the third true leaf
were separately collected from up 4 to 6 plants of each
genotype as biological replications. The sample picking
was carried out in June, 2018 (evening time). The leaves
were immediately weighed and frozen in liquid nitrogen.
The storage of samples was carried out at a temperature
of - 80 °С.

Extraction of compounds and metabolite derivatization
The metabolites of guar leaves were extracted after
freezing in cold methanol in 1.5 mL Eppendorf type
microtubes (SSI, USA) during 1 h at + 4 °С [27]. The ex-
tract solution was transferred to clear Eppendorf micro-
tubes and evaporated using the vacuum concentrator
(Labconco, USA).
Derivatization was carried out by silylation method.

For this purpose, dry metabolites were dissolved in 50 μl
pyridine and 20 μl internal standard tricosane (nC23,
Sigma) in pyridine solution (1 μg/μl). Silylation was car-
ried out using 50 μl N,O-Bis (trimethylsilyl) trifluoroace-
tamide (BSTFA, Sigma).

Metabolite identification by GC-MS
GC-MS analysis of the samples was performed with the
gas chromatograph system (Agilent 6850, USA) in co-
operation with mass-spectrometer (Agilent 5975B, USA).
The system used a DB-5HT capillary column coated with
5%cross-linked diphenyl (30m × 250 μm inner diameter,
0.25 μm film thickness; Agilent J&W, USA). 0.8 μm ali-
quot of the sample was added in splitless mode. Helium
was used as the carrier gas. The flow of the front inlet
purge was 1mL/min. The original temperature was set at

70 °С. The temperature was increased from 70°С to 340°С
at a speed of 4 °C/min. Temperature 250°С was used for
the injection. The full-scan mode of the mass spectrom-
etry data was 50m/z – 800m/z at a rate of 2 spectra scan
per second. The chromatogram recording was performed
on the signal of the total ion current by Agilent ChemSta-
tion soft.
The peak detection and measurement of integrated

area of peaks carry out by UniChrome 5.0.19.1162
(www.unichrom.com). The calculation of relative con-
centration on the weight of sample and concentration
internal standard tricosane (1 μg/μl) was performed by
methods of semi quantitative analysis.
For GC-MS-analysis, in average, 5 replicates of each

genotype were used. As the result, a minimum 3 good-
quality chromatogram were obtained for each genotype.
The calculating of concentration value for each detected
metabolite was performed by averaging of all reps avail-
able, taking into account a value of relative standard
deviation (RSD) [5, 44].
Identification of metabolites was performed with Au-

tomated Mass Spectral Deconvolution and Identification
System AMDIS 32 (http://www.amdis.net/) using library
NIST/EPA/NIH 08 Mass Spectral Library (http://www.
nist.gov/srd) and database of mass spectrometric infor-
mation, created at the Komarov Botanical Institute.
Then the results (10 largest peaks and Retention Index
(RI)) were verified by comparison with database GMD,
Golm Metabolome Database (http://gmd.mpimp-golm.
mpg.de/analysisinput.aspx). The metabolite was consid-
ered identified if Match factor values exceeded threshold
700.

Statistical analysis of differentially expressed metabolites
in groups
The multivariate statistical processing of metabolomic
data was carried out using online analysis platform
MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) [45].
Data have been subjected to the log transformation (gen-
eralized logarithm transformation or glog).
One-way ANOVA (t-test) analysis were used to iden-

tify important metabolites discriminating two groups.
When FDR p-value was less than 0.01, a metabolite was
characterized as significantly different in its concentra-
tion between the groups. Multivariate analysis included
hierarchical cluster analysis (Heatmap), principal com-
ponent analysis (PCA) and orthogonal projections to la-
tent structures (OPLS) with constructed S-plot for
orthogonal features. Preprocessing of data for multivari-
ate analysis included missing value estimation. Missing
values were replaced by the lowest values (half of the
minimum positive value in the original data). Data filter-
ing and data scaling was not performed.
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The Heatmap provides intuitive visualization of a data
table of concentration of metabolites in different sam-
ples. Each colored cell on the map corresponds to a con-
centration value in the data table, with samples in rows
and features/compounds in columns: the redder - the
higher the logarithm of concentration. The blue color -
the lower the concentration logarithm. Data clustering
was performed based on the Euclidean distance estima-
tion using Ward Clustering algorithm.
Using the PCA analysis method, the two-dimensional

model was constructed confirming the differences be-
tween groups and displaying the general similarity and
difference between samples. An S-plot [46] was further
generated to identify statistically significant metabolites
discriminating early and late flowering plants, i.e. show-
ing the highly significant negative correlation.
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