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bacterial blight and drought stress in rice
reveal potential genes to improve multi-stress
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Abstract

Background: The unprecedented drought and frequent occurrence of pathogen infection in rice is becoming more
due to climate change. Simultaneous occurrence of stresses lead to more crop loss. To cope up multiple stresses, the
durable resistant cultivars needs to be developed, by identifying relevant genes from combined biotic and abiotic
stress exposed plants.

Results: We studied the effect of drought stress, bacterial leaf blight disease causing Xanthomonas oryzae pv. oryzae
(Xoo) pathogen infection and combined stress in contrasting BPT5204 and TN1 rice genotypes. Mild drought stress
increased Xoo infection irrespective of the genotype. To identify relevant genes that could be used to develop multi-
stress tolerant rice, RNA sequencing from individual drought, pathogen and combined stresses in contrasting geno-
types has been developed. Many important genes are identified from resistant genotype and diverse group of genes
are differentially expressed in contrasting genotypes under combined stress. Further, a meta-analysis from individual
drought and Xoo pathogen stress from public domain data sets narrowed- down candidate differentially expressed
genes. Many translation associated genes are differentially expressed suggesting their extra-ribosomal function in
multi-stress adaptation. Overexpression of many of these genes showed their relevance in improving stress tolerance
in rice by different scientific groups. In combined stress, many downregulated genes also showed their relevance in
stress adaptation when they were over-expressed.

Conclusions: Our study identifies many important genes, which can be used as molecular markers and targets for
genetic manipulation to develop durable resistant rice cultivars. Strategies should be developed to activate down-
regulated genes, to improve multi-stress tolerance in plants.

Keywords: Drought, Xanthomonas, Rice, Combined stress, Transcriptome, Meta-analysis, Translation, Climate change,
Transcription factor, Kinases
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of uneven rainfall and severe drought stresses are com-
mon, which threaten the crop production [2]. During
drastically changing climatic conditions, many bacterial
pathogens can infect plants and reduce the yield. Rice
being grown in the puddled condition is more sensitive
to uneven rainfall and drought stress. Besides its direct
effect on the crop, drought stress alters plant-pathogen
interaction and disease development [3]. The occurrence
and severity of combined biotic and abiotic stresses,
depend on host resistance or susceptibility, duration of
stress exposure and pathogen race [4]. Evidences suggest
that, plant responses overlap for drought and bacterial
stresses in many crops like Arabidopsis, rice, chickpea,
sunflower and several cross-talk mechanisms have been
identified [1, 5-7]. Transcriptomic and meta-analysis
approaches using expression profile between biotic and
abiotic stresses have revealed unique genes which per-
form similarly across different stress stimuli [8, 9]. Inter-
estingly phytohormone cross-talk mechanisms share
many common responsive genes in combined multiple
stresses [10-12].

Multiple QTLs for drought resistance and resistance
against bacterial blight caused by Xanthomonas oryzae
pv. oryzae (Xoo) bacteria has been identified [3, 13]. The
introgression of Xa21, Xa5, Xal3 conferred broad spec-
trum resistance in different rice cultivars against bacterial
infection [14]. Studies have shown genotype dependent
pathogen infection in rice under drought-induced con-
ditions [3]. Genotypes with suitable Xa genes provide
resistance against bacterial blight under drought condi-
tions. The introgression of R genes Xa4 and Xa7 in near
isogenic lines confers resistance against bacterial blight
under high temperature [15]. Combined stress of high
temperature and bacterial blight, drought stress and bac-
terial blight at seedling stage found multiple Xa genes,
which can be introgressed to improve resistance [7].
Combined stress tolerance was improved by the intro-
gression of four resistance genes (Xa4, xa5, xal3 and
Xa21) with submergence (Subl), salinity (Saltol), blast
(Pi2, Pi9) and gall midge (GmI, Gm4) [16]. Evidences
suggest that, introgression of multiple drought QTLs
along with many R genes in an elite genotype can provide
tolerance against combined stress in rice [3].

Multiple stress tolerance is governed by several genes,
to develop durable resistant genotypes, evaluating rice
varieties under combined stresses is the best strategy
[3]. The candidate genes which are involved in multi-
stress tolerance may be identified in plants exposed to
combined stress. Existing reports suggested that, several
overlapping genes in Xoo and drought stress play role
in improving tolerance. Transcriptome data of drought
and Xoo infection showed 2276 overlapping genes which
were differentially expressed [8]. Meta-analysis study of
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transcriptome from drought and bacterial blight com-
bined stress, 5084 and 1618 differentially expressed genes
(DEGs) were identified in rice and Arabidopsis respec-
tively [17]. Meta-analysis of sunflower transcriptome
revealed 526 upregulated and 4440 downregulated genes
in combined stress of drought and pathogen along with
NaCl, cold and oxidative stress [5]. These studies identi-
fied the genes by comparing the individual stress tran-
scriptome data. Comparative study for drought and Xoo,
in resistance rice line H471 and its recurrent parent HHZ
identified 306 and 840 DEGs, and 178 genes were com-
mon among both stresses [18].

We made an attempt to identify candidate genes in rice
plants exposed to the combined stress of drought and
bacterial blight causing pathogen infection. The major
challenge in studying the multiple stresses, is imposition
of combined stresses simultaneously [19]. Severe drought
stress reduces the bacterial multiplication due to higher
leaf water loss [20]. To overcome this, we optimized a
combined stress imposition method in rice by gradu-
ally reducing the soil moisture content and subsequently
infecting pathogen. A comparative transcriptomic data
from contrasting BPT5204 and TN1 rice genotype was
developed. Several relevant genes for individual and
combined stress, regulating different pathways were
identified. A meta-analysis from individual drought and
Xoo infected rice was performed, using public microar-
ray datasets. Several DEGs identified were characterized
in stresses for either abiotic or biotic factors. Our results
demonstrated that several genes are involved in multi-
stress tolerance. The identified genes can be used as
genetic markers and candidate genes for crop improve-
ment programs.

Results

Differential response of contrasting rice genotypes

to combined drought stress and pathogen infection

To study the responses of rice under drought, patho-
gen and combined stress, two contrasting BPT5204
and TN1 genotypes were maintained in four differ-
ent sets. One set of 45-days-old plants were infected
with Xoo and another set was exposed to drought
stress by gradually reducing soil moisture content upto
60% field capacity (FC). For combined stress (Xoo and
drought stress), the 45-days-old plants were exposed
to drought stress by reducing FC to 80% for two days
and infected with 0.5 x 103 CFU/mL of concentration
of Xoo by leaf clipping method. Further, moisture level
was reduced to 60% FC and plants were maintained for
four days (Fig. 1A). Disease pattern and bacterial mul-
tiplication rates were assessed in resistant BPT5204
and susceptible TN1 genotypes. After 4 dpi, Xoo
pathogen infection rate and lesions were measured at
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different time intervals. The susceptible TN1 geno-
type showed higher infection under drought condi-
tion (Fig. 1B) at 6 dpi and progressed severely till 12
dpi, whereas, in BPT5204 bacterial infection progres-
sion was slow. In case of combined stress, TN1 geno-
type showed higher susceptibility and even BPT5204
showed higher lesions compared to individual patho-
gen infection. TN1 genotype showed >1-2 fold higher
pathogen multiplication than BPT5204 at 4, 6, 8, 10, 12
and 14 dpi, whereas at 6 dpi > 2 fold pathogen multipli-
cation was observed in only pathogen infected plants.
Increased lesions were observed in TN1, whereas,
BPT5204 maintained less bacterial growth as well as
disease symptoms (Fig. 1B and C). In case of com-
bined stress, drought stress prior to pathogen infection
resulted in reduced bacterial multiplication in both
genotypes (Fig. 1D). At 4 dpi, no significant difference
was observed in bacterial multiplication rate in both
the genotypes, whereas at 6, 8, 10, 12 and 14 dpi TN1
showed higher bacterial multiplication compared to
BPT5204.

The individual and combined stress effect were
quantified, by measuring reactive oxygen species
(ROS) such as superoxide and H,O,. Superoxide esti-
mation using NBT staining showed higher level of ROS
accumulation in combined as well as drought stress.
In drought stress>2.5 fold levels of superoxide was
accumulated in BPT5204, whereas, in pathogen infec-
tion there was no significant difference was observed
in both contrasting genotypes. Similarly, in com-
bined stress>2.5 fold accumulation was observed in
BPT5204 compared to TN1 (Fig. 2A). H,0O, quantifica-
tion using DAB was observed > 2.5 fold in BPT5204 in
individual stress whereas in combined stress accumu-
lation was ~ 10 fold higher compared to TN1 (Fig. 2B).
The effect of stress on cell membrane was quantified
using Evan’s blue in individual as well as combined
stress (Fig. 2C). In drought stress, membrane damage
was observed > 3.5 fold in BPT5204 compared to TN1
whereas, in pathogen infection there was no significant
difference was observed. In combined stress, accumu-
lation of Evan’s blue dye was > 2 fold in BPT5204 com-
pared to TN1 genotype (Fig. 2D).
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Transcriptional profiling identifies common and unique
genes in combined stress

The emphasis of the study is to identify the candidate
genes which can help in improving the combined stress
tolerance in rice. We followed two approaches, initially
RNA sequencing data was developed from contrast-
ing rice genotypes that are exposed to individual and
combined stress to identify common and unique genes
(Fig. 3A i, Additional file 1). In another approach, micro-
array data from individual drought and pathogen stress
from public domain was analysed (Additional file 1) and
common differentially expressed genes (DEGs) were
identified (Fig. 3A ii).

The transcriptomic data from four different sets i.e.
control, drought, pathogen and combined stress for both
BPT5204 and TN1 genotypes were developed. Around
98.16% of the high-quality reads were mapped to the
reference genome. A total of 3381 unique DEGs were
identified across the stress treatments (Additional file 1).
We identified 903 (BDP-Combined stress), 659 (BD-
Drought), and 834 (BP-Pathogen) DEGs in BPT5204. In
TN1 genotype, 1226 (TDP-Combined Stress), 893 (TD-
Drought), and 677 (TP-Pathogen) DEGs were observed
(Additional file 1). In the BPT5204, 191 genes from 903
DEGs in combined stress were found to be common in
drought stress, and 265 DEGs were common in patho-
gen infection (Fig. 3B). Similarly, in TN1, 387 and 218
of DEGs from combined stress were found to be com-
mon with drought stress and pathogen infection respec-
tively (Fig. 3C). In all treatments, 82 and 134 genes were
expressed in BPT5204 and TN1 genotypes, respectively.
The transcriptomic data revealed that in BPT5204, 374
genes and in TN1, 548 genes were uniquely expressed in
combined stress (Fig. 3D, Additional file 1).

Gene ontology analysis was performed to classify
genes in different categories. In pathogen infection,
BPT5204 and TN1 genotypes showed more number of
genes in molecular function (41% and 40% respectively)
followed by cellular components (35% and 36% respec-
tively) and biological processes (24% both) (Fig. 4A,
Additional file 2). Likewise in drought stress, DEGs from
both BPT5204 and TN1 genotypes represented more
number of genes in molecular function (42% and 40%
respectively) followed by cellular components (35% and
37% respectively) and biological processes (23% both)

(See figure on next page.)

Fig. 1 Combined stress response of contrasting rice genotypes. A Scheme showing combined and individual drought and pathogen stress
imposition method. Drought stress was imposed to 45-days-old plants by gradual reduction in moisture content and maintained upto 60% FC.
Xoo was infected to 47-days old plants at 80% FC with 0.5 x 108 CFU/mL using leaf-clipping method. For combined stress, when plants reached
80% FC, infected with Xoo and maintained upto 60% FC. B Bacterial disease symptoms in BPT5204 and TN plants exposed to drought, pathogen
and combined stress at 6, 8, 10 and 12 dpi. C Bacterial multiplication rate from 4 to 14 days in contrasting rice genotypes under pathogen stress.
D Bacterial multiplication rate in combined stress were measured from 4 to 14 days. Minimum five biological replicates were maintained for each
stress. Graphs showing mean values & SE. Significant differences were determined at p <0.0001 with one-way ANOVA using Tukey’s HSD analysis
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Fig. 2 Effect of individual and combined stress response on rice plants. A Level of superoxide radicles in drought, pathogen and combined stress.
After two days of plants reaching to severe stress, leaves were stained with NBT. B Levels of H,0, in drought, pathogen and combined stress was
quantified using DAB staining. C Photographs showing Evan’s blue staining to measure membrane stability. D Quantification of Evan’s blue dye
accumulation. Minimum five biological replicates were used for quantification. Graphs showing mean values &+ SE. Significant differences were
determined at p <0.0001 (estimated by one-way ANOVA using Tukey’s HSD analysis

(Fig. 4B, Additional file 2). In combined stress, BPT5204
genotype represented 41% of genes in molecular func-
tion having ATP binding, protein binding, kinase activity,
zinc binding and DNA binding activity. In TN1 genotype,
41% of genes represented in molecular functions of ATP
binding, electron transfer, kinase activity, DNA bind-
ing and protein binding groups. In BPT5204 and TN1,
36% and 35% of genes respectively were represented in
cellular components belonging to cytoplasmic vesicle,

mitochondrion, plastid, membrane, nucleus and others.
23% of genes in BPT5204 and 24% of genes in TN1 were
represented in biological processes belonging to protein
phosphorylation, regulation of transcription, metabolic
process, oxidation—reduction process, proteolysis and
others (Fig. 4C, Additional file 2).

The upregulated genes in combined stress, 22%
of genes were represented in molecular function in
BPT5204 genotype and 20% of genes in TN1 (Fig. 5A,
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Additional file 3). In downregulated genes, upon com- identified. To assess the role of these genes, a PubMed
bined stress more number of genes were downregulated search was conducted to know their relevance in plant
in TN1 belonging to molecular function (21%), whereas  stress adaptation. Interestingly, the role of many genes
in BPT5204, 19% of genes were represented (Fig. 5B).  in plants were validated for different stresses by many
Several common genes from both the genotypes were research groups across the globe (Table 1).
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Meta-analysis, narrowed down candidate genes

for combined stress tolerance

To identify the key genes involved in combined stress, a
meta-analysis was conducted using transcriptomic data
from resistant and susceptible genotypes (our study) and
microarray data from individual drought and pathogen
infection from public domain (Additional file 4). The
data was curated and analysed from both the approaches.
Common and unique genes in individual and combined
stress were identified which acts as candidate genes to
develop multi-stress tolerant crops (Table 2, Additional
file 5). In upregulated genes, under drought stress 230
genes were unique in BPT5204 and 79 genes were com-
mon in both microarray and RNA Seq data. Similarly 264
genes were unique in TN1 and 75 genes were common
in microarray and RNA Seq data. This analysis identi-
fied, 14 unique genes that were commonly upregulated in
BPT5204 and TN1, 5 genes were found to be common in
both RNA Seq and microarray data. There are 22 unique
genes and 6 commonly downregulated genes were identi-
fied (Table 2, Additional file 5).

In pathogen infection, 278 genes were uniquely upreg-
ulated in BPT5204 and 51 genes were common in micro-
array and RNA seq data. In TN1, 194 genes were unique
and 70 genes were found upregulated in both microar-
ray and RNA Seq data. Meta-anaylsis with RNA Seq and
microarray revealed 19 unique genes between the geno-
types and 11 common genes. In downregulated genes,
36 unique and 5 common genes were identified (Table 2,
Additional file 5).

In combined stress, 394 genes were uniquely upregu-
lated in BPT5204 and 53 genes were common in micro-
array and RNA Seq data. 487 genes were upregulated
in TN1 and 108 genes were common in microarray and
RNA Seq data. From meta-analysis, 84 unique genes and
26 common upregulated genes were identified. Interest-
ingly, no downregulated unique gene in the genotypes
and 9 genes were common in both RNA Seq and micro-
array (Table 2, Additional file 5). Overall from our geno-
types identified many genes and using meta-analysis, key
important genes which may be more relevant for improv-
ing combined stresses were identified.

Differential responses of translation associated genes

Translation associated genes were differentially regu-
lated in combined stresses. Ribosomal protein encoding
genes play an important role in both biotic and abiotic
stress conditions. To study the responses of translational
associated mechanisms during the combined stress in
both BPT5204 and TN1, the transcripts encoding ribo-
somal proteins (RP) were filtered from RNA seq data.
In drought condition, 19 genes were commonly upregu-
lated in both genotypes and same number of genes were
downregulated (Table 3, Additional file 6). The number
of genes that were up and downregulated were more in
TN1 compared to BPT5204 indicating the severity of
stress on that genotype. In pathogen infection, 26 and 34
genes were up and downregulated, respectively. Interest-
ingly, more no. of genes were upregulated in BPT5204. In
combined stress, 29 genes were upregulated and 27 genes
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Table 2 Differentially expressed genes from pathogen, drought and combined stress from RNA sequencing data generated from this

study and microarray data from public domain

Drought Upregulated genes Downregulated genes
Unique Common Microarray Unique Common Microarray
BPT 5204 230 79 6120 297 54 6046
TN1 264 75 6124 460 94 6006
Common ¢ 14 5 22 6
Pathogen
BPT 5204 278 51 5041 432 72 3496
TN1 194 70 5022 374 39 3530
Common? 19 11 36 5
Drought + Pathogen
BPT 5204 394 53 2593 423 33 1930
TN1 487 108 2538 585 45 1918
Common’ 84 26 0 9

2 The list of these genes were given in additional file 5

were downregulated in both genotypes. The no. of genes
upregulated in BPT5204 is less than TN1 genotype.

To validate a few RP encoding genes using qRT-PCR,
tissues were collected from 4 and 6 dpi. The expression
of RPL28, L25, L27, L46, L5e/L18, LS5, L23, L10, RPSS,
S18, S17, S14, S12 and S4 genes were assessed in the RNA
seq from both genotypes showing differential expres-
sion profile (Fig. 6A). The expression analysis study of RP
encoding genes in drought, at 4 d showed upregulation
in BPT5204. RPL25, RPL27, RPLS, RPL46, RPS12 and
RPS14 were upregulated > 2 fold at 4 days (Fig. 6B) and at
6 days varied expression levels observed. However, RPL27
and RPL5 has maintained > 2 fold expression in BPT5204
(Fig. 6C). In pathogen infected condition at 4 dpi, all the
RP encoding genes were upregulated in BPT5204 except
RPL25. Expression of RPS8, RPS17 and RPS12 was upreg-
ulated > 2 fold (Fig. 6D). At 6 dpi, RPLS and RPSI7 tran-
script levels were >2 fold in BPT5204 compared to TN1
(Fig. 6E). In combined stress of drought and pathogen,

Table 3 Differential expression of ribosomal protein encoding
genes from RNA sequencing data

Drought Upregulated Downregulated
Unique Common Unique Common
BPT5204 12 19 7 19
TN1 37 1M
Pathogen
BPT5204 22 26 35 34
TN1 7 27
Drought + Pathogen
BPT5204 16 29 27 27
TN1 22 26

the levels of RP encoding genes were significantly upreg-
ulated than individual stresses in resistant BPT5204 gen-
otype. In combined stress, at 4 dpi transcripts of RPL2S,
RPL27, RPLS5, RPS8, and RPS12 were > 4 fold upregulated
in BPT5204 compared to TN1. Other genes were also
upregulated in resistant BPT5204 genotype (Fig. 6F). At
6 dpi transcripts of RPL27 and RPLS5 were maintained >
8 fold in BPT5204 compared to TN1. The transcripts of
other genes were maintained at higher levels in BPT5204
than TN1 genotype (Fig. 6G).

Discussion
Rice is affected by plethora of stresses like drought, bac-
terial blight caused by Xoo, that are major constraints
causing substantial crop loss. During drought stress in
rice plants, reduction in fresh and dry biomass, plant
height, tiller number, panicle number lead to crop loss.
Many QTLs for drought stress tolerance are introgressed
into elite varieties to improve crop yields. Similarly, many
QTLs against Xoo has been identified to improve resist-
ance to bacterial leaf blight (BB) disease. Efforts has been
made to introgress BB resistant Xa genes with drought
QTLs. Rice genotypes having Xa4/qDTY2.2+qDTY4.1
showed improved resistance for combined drought stress
and Xoo infection. Many genes have been identified and
characterized for individual stresses, however, toler-
ance traits for abiotic and biotic stresses are multigenic
in nature. From this context, developing durable cli-
mate resilient crops are in demand. To develop durable
resistant crops, the candidate genes are prerequisite for
improving combined stress tolerance.

Studying the simultaneous stress occurrence / com-
bined stress experiment on plants in laboratory condi-
tions are challenging due to the lack of stress imposition
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methods. In rice, transcriptome data was developed in
combined drought and pathogen infection when plants
reached 20% FC [18]. At 20% FC in drought condition,
pathogens do not infect rice to cause disease, because
of higher ROS that is cytotoxic. However, during severe
drought stress, tissue water status reduces which inhibit
bacterial growth in intracellular spaces [21]. To overcome
this, we infected the plants with Xoo at mild drought
stress (80% FC). At mild drought stress condition, water
status of leaf reduces moderately and when pathogens are
challenged, they can cause severe infection as observed
in our study. When Xoo was infected at 80% FC, patho-
gen multiplied at higher rate causing more lesion length
as evident in combined stress in both genotypes. At
80% FC, tissue water status does not reduce drastically
which is favouring pathogen to infect the rice plants effi-
ciently. The infection of Xoo on rice plants by leaf clip-
ping method does not add additional water supply as in
Arabidopsis and do not change relative water content of
leaf. In this condition, pathogen infection is increased in
combined stress. In resistant genotype BPT5204, higher
ROS at 60% FC decreased the bacterial growth.

BPT5204 was introgressed with Xa5, Xa13 and Xa21 to
improve resistance against Xoo [22]. To identify common
and unique genes which can be involved in resistance
under combined stress, comparative transcriptome data
from resistant genotype with sensitive genotype and pub-
lic data sets may provide relevant genes [23, 24]. A meta-
analysis can integrate multiple transcriptomic data from
different set of experiments, which provide an option
to identify overlapping genes between drought and BB
infection, to improve multi-stress tolerant plants using
relevant candidate genes.

The RNA Sequencing data from BPT5204 and TN1
showed upregulation of many peroxidases, cinnamoyl-
CoA genes, starch and sugar metabolism genes that are
involved in phenylpropanoid biosynthesis pathway in
both the genotypes. In combined stress, genes encod-
ing thiolase-like protein, WRKY70, fatty acid elongase
1, Calcium dependent kinases were upregulated. Many
kinases were upregulated that in turn triggered many
hormone signalling genes. Many candidate genes were
identified for combined stress tolerance from these gen-
otype. Meta-analysis identified 110 genes in combined
stress, which were upregulated from different stud-
ies (Table 2). Interestingly, many of these genes were
characterized for individual stresses (Table 1). In com-
bined stress, kinases like serine kinase (Os05g0466900,
Os12g0454800) were upregulated, similarly leucine-
rich repeat genes (Os01g0162300, Os01g0162500), ras-
related protein (0s01g0750000), MTN3 (0Os01g0606000),
phosphofructokinase  (0s06g0326400),  cyclin-depend-
ent kinase inhibitor (Os09g0459900) genes were
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upregulated. Overexpression of serine/threonine kinases
showed improved abiotic stress tolerance in Arabidop-
sis [25]. The role of Os12g0454800 in cytokinin signal-
ling has been deciphered [26]. A leucine-rich protein
0s02¢0536300 involved in sensing PAMP responses
to trigger the plant immunity [27]. Like that many ser-
ine threonine protein kinases have been characterized
which are involved in improving the stress conditions to
mediate cellular responses. In individual and common
drought stress,12 transcription factors like Zinc finger
RING-type domain, HOX29, heat shock transcription
factor 31, bZIP (0s02g0578500), transcription activa-
tor for tolerance to drought, high-salt and cold stresses
(0s09g0522200), elongation factor, NAC, NAM, Class-B
HSF (0s08g0546800), HSF29, HOX22, Homeodomain-
leucine zipper (HD-Zip) genes were upregulated. AP2
domain containing protein RAP2.6 was downregulated.
Transcription factors like NAC, WRKY, bHLH, bZIP were
induced upon drought stress and bacterial blight infec-
tion. TFs regulate many downstream target genes [28—
32]. WRKY45 showed broad spectrum resistance and
acts as a negative regulator for pathogen, salt, cold and
drought stress is upregulated in combined stress [33, 34].
WRKY11 acts as a positive regulator of defence response
against Xoo and drought tolerance is upregulated in com-
bined stress [35]. Genes encoding domains of unknown
function (DUF) 250, 868,761 were upregulated in com-
bined stress. DUF 810 improved drought and salt stress
[36]. In combined stress, ACC oxidase (Os09g0451400)
was upregulated and showed to involve in ethylene path-
way indicating hormonal biosynthesis, play key role in
combined stress tolerance [37].

Few peptidases Al, aspartic proteinase nepen-
thesin-1 (0Os06g0610800), serine carboxypeptidase 1
(Os04g0176400), peptidase S8 (0s10g0524600), and M50
family genes (Os03g0729000) were upregulated in com-
bined stress. Peptidase Al encoding aspartic type endo-
peptidase activity showed improved biotic and abiotic
stress [38]. Similarly peptidase C1A showed to play a role
in seed development and improved stress tolerance [39].
Many UDP-glucuronosyl and UDP-glucosyltransferase
were upregulated in combined stress [40]. Few chaperons
like Cpn60, copper chaperone homolog CCH, HSPs, dehy-
drins were upregulated in combined stress and involved
in improving biotic and abiotic stress tolerance in many
plants [41]. The DEGs identified in combined stress have
potential to improve multiple stress tolerance in rice.

Translation associated genes are differentially
expressed in combined stress. Ribosomal proteins are a
class of highly conserved proteins across the living sys-
tem involved in translation mechanisms. Among them,
many are considered to have an important role during
growth, development and stress condition in plants [42].
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Many omics reports, represent genes associated with
translation mechanism that are differentially regulated in
individual as well as combined stress [7]. Recent studies,
have shown extra-ribosomal function of ribosome encod-
ing genes. There are 29 ribosomal protein encoding genes
that were upregulated in both the genotypes in combined
stress. Subsequent, validation of these genes confirmed
upregulation in BPT5204 in combined stress, however,
response of these genes varied from individual drought
and pathogen infection. RPL10 was upregulated at early
time points in resistant genotypes, however, in TN1
upregulation was at 6 dpi indicating mechanism of early
sensing of stress in tolerant variety compared to sensitive
genotype. Mutation/silencing of RPL10 in Arabidopsis,
Nicotiana benthamiana showed susceptible phenotype
and weak ABA response [43, 44].

Genome wide expression analysis of rice in drought
and Xoo showed upregulation of RPL12, L28, L38, L36,
L44 and L51. In combined stress, expression of RPL28,
L25, L27, L5, L46, L18 was upregulated, similarly RPS14,
S12, 89, S4 were upregulated in resistant genotypes,
RPS6, RPS9 and RPS10 were responsive to biotic stress
[45]. RPL10 play a vital role during both viral and bacte-
rial infection acting as a positive and negative regulator
[46]. Virus-induced gene silencing of RPS12 and RPSI9
in N. benthamiana showed compromised non-host dis-
ease resistance [47]. Mutated rpl23 plants showed to have
impaired growth and developmental abnormalities [48].
rpl27 mutant plants showed impaired shoot development
and seed setting [49]. Our study shows elevated levels of
RPL23A and RPL27 during drought and combined stress.
RPS14 showed higher transcript levels upon hormo-
nal treatment [50] and pathogen infection [51]. RPS14
also showed a similar pattern of upregulation during
all stress conditions. These evidences clearly show their
extra-ribosomal functions in regulating stress adaptation.
These ribosomal proteins play critical role in both tran-
scriptional and translational mechanisms and differential
expression of these genes indicate their potential role in
improving multi-stress tolerance. More detailed stud-
ies are required to unravel these genes potential in stress
adaptation.

Conclusion

Developing climate resilient crops are in demand to
supply the food for growing population. The relevant
genes to improve multi-stress tolerance can be identi-
fied from plants which are simultaneously exposed to
different combination of stresses. We have optimized
combination of drought and bacterial infection process
in rice and developed transcriptome information from
contrasting genotypes. We demonstrate that, the role
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of many candidate genes which showed to improved
stress tolerance for both drought and pathogen infec-
tion. Many of the genes were functionally validated by
different research groups. These genes could be used to
develop durable multi-stress tolerant crops in changing
climatic conditions. Many candidate genes can be used
for introgression in elite genotype background and also
can be targeted for genetic manipulation using gene
editing approaches.

Material and methods

Plant materials and growth conditions

Rice seeds of BPT5204 and TN1 genotypes collected
from National Seed Project (NSP), University of Agri-
cultural Sciences, GKVK, Bengaluru were used for this
study. BPT5204 rice genotype is resistant to bacterial
blight and is highly cultivated and TN1 genotype is sus-
ceptible for drought and bacterial blight. Four different
sets i.e. control, drought, pathogen and combined stress
were imposed. Seeds were soaked in water for O/N fol-
lowed by germination on wet filter paper in Petri-plate.
The germinated seedlings were transferred to individual
pots, kept in green house condition (28 °C, 60% rela-
tive humidity and 16 h light / 8 h dark condition) and
maintained. 45—day-old plants were used for imposing
drought, pathogen and combined stress.

Xanthomonas oryzae pv. oryzae (Xoo) inoculation and leaf
sampling

Xoo culture was grown in nutrient broth (NB) medium
(1% polypeptone, 0.5% yeast extract, 1% sucrose, pH 6.8)
at 28°C for 48 h. The Xoo inoculum was prepared by sus-
pending the bacterial cells in 10 mM MES buffer. Leaves
of 45-day-old plants were infected with 0.5 x 108 CFU/
mL of Xoo inoculum by leaf clipping method [52]. Bac-
terial disease symptoms were observed at 4 days of post
infection (dpi), 6 dpi, 8 dpi, 10 dpi, 12 dpi and 14 dpi and
bacterial growth was measured from the infected leaves.

Drought and combined stress imposition

For drought stress, 45-days-old rice plants were exposed
to gradual reduction in soil moisture content till 60%
field capacity (FC) and further maintained along with
the respective control. The samples were collected after
plants reaching 60% FC for RNA sequencing. For com-
bined stress imposition, 45-days-old rice plants were
exposed to moisture stress by gradual reduction in water-
ing till they reach 80% FC, then plants were infected with
Xoo (5*10% CFU/mL) and further maintained till 60% EC.
Bacterial disease symptoms and CFU was measured at 6,
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8, 10 and 12 dpi. After 51 days, tissues from minimum 5
plants were pooled in each sample, three biological rep-
licates were collected from each pathogen, drought and
combined stress exposed plants along with their respec-
tive controls.

Determination of hydrogen peroxide (H,0,)

by Diaminobenzidine (DAB) staining

Detached rice leaves were immersed in 1 mg/mL DAB
(SRL- Sisco Research Laboratories, New Delhi, Cat no.
17076) solution at 3.8 pH. Leaves were infiltrated and
kept in box for 5-6 h until brown precipitation was
observed. Chlorophyll, was removed from the leaves with
ethanol washing. Stained leaves were fixed in ethanol:
acetic acid: glycerol (3:1:1) and photographs were taken.
For quantification, stained leaves were ground and accu-
mulation of formazan (reddish brown colour) was quan-
tified by measuring the absorbance at 450 nm.

Determination of superoxide anion radicals by using
Nitroblue tetrazolium chloride (NBT)

Superoxide ion (O,7) react with NBT to form blue col-
our. Leaves were excised and kept in 0.1% (w/v) Nitro Blue
Tetrazolium (NBT), 10 mM sodium azide and 50 mM
potassium phosphate solution (pH 6.4). Leaves were vac-
uum infiltrated for 2—3 times until leaves were completely
infiltrated. Further, leaves were kept in 10 mL of 0.1% NBT
for 15 min. Chlorophyll was removed from leaves by wash-
ing with ethanol. Photographs were taken and quantifica-
tion was done by measuring the absorbance at 560 nm.

Cell membrane damage by Evan’s blue staining assay
Evans blue (Sigma-Aldrich, Cat no. E2129) solution was
prepared in 0.1 M CaCl, solution at pH 5.6. Tissues were
dipped in Evan’s blue solution for overnight and excess
unbound dye washed with water. Images were taken
under microscope. To quantify Evans blue, dye was
extracted in 1% SDS from the stained tissues and centri-
fuged for 5 min at room temperature to remove debris
and elute dye into the supernatant. Optical density was
measured at 600 nm and 1% SDS was used as blank. Con-
centration of Evans blue dye was estimated using stand-
ard curve method [53].

RNA extraction and quantitative real-time PCR analysis

For RNA isolation from drought, pathogen and com-
bined stress, plant samples were collected at 4 dpi and 6
dpi from both genotypes along with respective control.
Samples were frozen in liquid nitrogen, crushed to pow-
der and RNA was isolated using TRIzol reagent (Sigma-
Aldrich, Cat no. T9424). Total 5 pg of RNA was then
converted to cDNA using MMLV reverse transcriptase
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(ThermoFisher Scientific, Cat no. EP0451) with oligo dT
primers. Specific primers for quantitative real-time PCR
(qRT-PCR) were designed (Additional file 7). The qRT-
PCR was performed using diluted cDNA and SYBR green
(Takara Bio, Cat no. RR820A) on a Quant studio 6 Real
Time PCR system (ABI-Quant studio 6 Real Time PCR
system, ThermoFisher Scientific, Singapore). The expres-
sion data was collected and further processed to calcu-
late 2722€T method [54]. Rice actin was used as internal
control for normalization and three biological replicates
were used for each gene.

RNA sequencing and data analysis

For RNA sequencing analysis, infected leaf samples were
collected at 4 dpi and frozen in liquid nitrogen. Since the
disease progression was slow at 4 dpi and at 6 dpi the bac-
terial load is very high, plants trigger many transcriptional
reprograming and to capture the differences we have
collected the tissue at 4 dpi. Samples were collected in
three biological replicates from both BPT5204 and TN1
genotypes. RNA sequencing was performed using Illu-
mina HiSeq2500 platform from cDNA library by Ther-
acues Innovations Pvt. Ltd., Bengaluru, India. The raw
data was trimmed and low-quality reads were removed
by the sickle trimming tool. The transcriptome analysis
was performed using CLC Genomics Workbench v.12.
The default parameters and analysis procedure followed
as per CLC Genomics Workbench manual instructions.
The control versus stress comparison [drought, patho-
gen and combined stresses (drought- pathogen)] was
done in both genotypes and the IRGSP1.0 rice genome
was considered as a reference for the analysis. The False
Discovery Rate (FDR)<0.05, and log,FC>1.5 (for up-
regulation), <-1.5 (for down-regulation) rigorous filtering
parameters were applied for the mining of differentially
expressed genes (DEGs). The functional descriptions of
the DEGs were retrieved from the Rice Annotation Pro-
ject (RAPDB) database. The downstream analysis like
pathway mapping, Gene ontology were carried out for
DEGs using web-based tools KEGG mapper using map-
ping parameters mismatch cost=2, insertion cost=2,
deletion cost=3, length fraction=0.8 and similarity frac-
tion =0.8. Transcripts Per Million (TPM) was used for the
expression calculation. The agriGO (v2) (https://agrigo.
rw/) analysis was performed using default settings.

Meta-analysis

Meta-analysis was performed using RNA sequencing
data of BPT5204 resistant and TN1 susceptible genotypes
and microarray data curated from individual drought and
pathogen infection from public domains (RiceMetasysA
http://14.139.229.201/RiceMetaSys/ and RiceMetasysB
http://14.139.229.201/RiceMetaSysB/).
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