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Abstract
Background  Consumption of leafy vegetables is a primary route of cadmium (Cd) exposure in the human body. 
Salicylic acid (SA) is a major stress signaling molecule that alleviates Cd toxicity in various plants. Our study aimed 
to investigate the effects of different SA concentrations on spinach growth, cadmium accumulation, and stress 
resistance physiology under cadmium stress (50 µmol/L).

Results  Cd stress significantly markedly decreased spinach growth and biomass, reduced its photosynthetic 
efficiency, increased activities of antioxidative enzymes, and upregulated the relative expression of several genes 
involved in cadmium absorption and transport compared to the control. The exogenous application of SA mitigated 
the harmful effects of Cd in spinach. 0.8 and 1.6 mmol/L SA significantly increased spinach root length, plant height, 
and biomass and decreased the Cd content in shoots by 30.03 and 17.35% compared to the Cd-treated group. 
Moreover, SA alleviated the yellowing of leaves caused by Cd stress. Exogenous SA ameliorated Cd toxicity in spinach 
by reducing reactive oxygen species, malondialdehyde, proline, and soluble protein levels. Exogenous SA application 
reduced Cd absorption in spinach leaves by downregulating the expression of genes involved in Cd transport, such 
as SoHMA4-like, SoNramp3.1-like, SoNramp6-like, and SoNramp7.2-like. Principal component analysis and correlation 
analysis showed that exogenous SA application under Cd stress was correlated with plant Cd content, photosynthetic 
pigment content, and relative expression of Cd absorption and transportation-related genes.

Conclusions  To summarize, these findings indicate that SA mitigates Cd toxicity in spinach by reversing the adverse 
effects of Cd stress on plant growth and reducing Cd accumulation in the shoots.

Keywords  Spinach, Cadmium, Reactive oxygen species, Salicylic acid, Principal component analysis, Correlation 
analysis
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Introduction
The contamination of farmland with cadmium (Cd) 
is increasing due to intensified agricultural practices 
globally. Cadmium accumulation results in substantial 
adverse effects on animals and plants [1]. Elevated Cd 
levels affect crop yield and quality and can accumulate in 
the human body through the food chain, posing a risk to 
both agricultural soil ecology and health [2, 3]. Therefore, 
it is imperative to prevent Cd absorption in the human 
body through the consumption of contaminated crops 
or vegetables [4]. Numerous studies have demonstrated 
that high concentrations of Cd affect plant germination, 
inhibit plant growth, and promote yellowing of plant tis-
sues and organs and leaf senescence, ultimately reducing 
plant yield [5–7]. Cd stress reduces the chlorophyll con-
tent and biomass of Salix variegata Franch by disrupting 
chloroplast structure [8]. Furthermore, prolonged expo-
sure to Cd stress can result in flower abortion [9]. Cad-
mium is primarily absorbed and transported through 
transporters of essential plant nutrients such as zinc, 
iron, copper, and manganese into different cell compart-
ments and plant tissues. These transport mechanisms are 
regulated by interactions with plant mineral nutrients 
and are modulated at transcriptional and post-transla-
tional levels [10]. Previous studies have indicated that 
exogenous plant hormones, such as salicylic acid, 5-ami-
nolevulinic acid, jasmonic acid, tryptophan, and abscisic 
acid, activate plant defense mechanisms and reduce cad-
mium toxicity in plants [11–16].

Salicylic acid is an important defense-regulating hor-
mone in plants [17]. The role of SA in local immunity, 
systemic acquired resistance, and responses to biotic 
and abiotic plant stress responses is associated with sev-
eral protective properties against several plant diseases 
and stresses [18]. Ma et al. reported that exogenous SA 
enhanced salt stress tolerance in pepper by regulating ion 
absorption, gene expression, and post translational modi-
fications [19]. However, previous studies have shown that 
SA-related signals are associated with plant adaptation to 
heavy-metal stress [20]. Exogenous SA treatment allevi-
ated cadmium toxicity in potatoes by increasing their 
relative water content and SA content while reducing the 
contents of malondialdehyde and reactive oxygen spe-
cies [11]. Moreover, SA reduced Cd accumulation in rice 
by regulating OsHD-Zip, and OsLCD expression [21]. At 
the same time, SA could enhance Cd resistance in rice 
by regulating the binding capacity of Cd to the cell wall 
[22]. However, there are few reports on the effects of SA 
on the transport and accumulation of Cd in vegetables 
under Cd stress.

Consumption of leafy vegetables is a primary route 
for Cd exposure in the body [23, 24]. Previous research 
demonstrated that leafy vegetables exhibited the high-
est heavy metal accumulation capacity, whereas melon 

vegetables had the lowest accumulation [25]. Liu et al. 
reported that edible leaves or stems of crops are mark-
edly contaminated with Cd compared to seeds or fruits 
[26]. As a representative of leafy vegetables, Spinach is 
highly susceptible to Cd pollution compared to other 
crops, posing a risk to human health throughout the food 
chain [27]. Waheed et al. demonstrated that exposure to 
50 µmol/L Cd stress significantly reduced the biomass, 
plant height, leaf area, and leaf length of spinach, con-
sistent with our preliminary test results [28]. Therefore, 
we used 50 µmol/L Cd to induce Cd stress in this study. 
However, the precise physiological mechanisms of exog-
enous SA in reducing the detrimental effects of Cd on 
spinach growth and its accumulation in spinach have not 
been elucidated. Therefore, our study aimed to explore 
the effects of SA on spinach growth indicators, photo-
synthetic parameters, antioxidant enzyme activity, and 
cadmium content under cadmium stress conditions to 
provide a basis for safe vegetable production.

Materials and methods
Materials
The experimental material used in this study was the 
“Greenway TY771” spinach variety. Seeds were pur-
chased from Chengdu Seed Station (Chengdu, China). 
The Hoagland nutrient solution was used as a nutrient 
source during spinach cultivation, and CdCl2·2.5H2O 
(analytical grade) was used as the Cd source. SA was 
obtained from Sigma-Aldrich (St. Louis, MO, USA).

Experimental design
This study was conducted at the Chengdu Campus of 
Sichuan Agricultural University between August 2022 
and December 2023. Uniform-sized healthy spinach 
seeds were washed thrice with ultrapure water, soaked 
with clean ultrapure water for 6  h, and evenly distrib-
uted in petri dishes containing wet filter paper. The petri 
dishes were then placed in a 24 ℃ artificial incubator 
for germination. Subsequently, the sprouted seeds were 
planted in a seedling tray containing perlite and vermicu-
lite (v: v = 1:1) and transferred to an artificial incubator. 
Half-strength Hoagland nutrient solution was added 
daily to the tray, and the incubator was set to 24/18 ℃ 
(day/night) and a 14/10 h (day/night) photoperiod under 
a 200 µmol/m2/s light intensity. Seedlings exhibiting 
rapid and consistent growth at the four-true-leaf stage 
were selected and transplanted into 10 × 10 cm (depth × 
height) nutrient containers containing perlite. One plant 
was transplanted to each container, and the containers 
were transferred to a plastic dish (with a height of 8 cm) 
containing full-strength Hoagland’s nutrient solution, 
which was replaced every 3 days.

Three days after the transplantation of the seedlings, 
the spinach leaves were sprayed with ultrapure water and 
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SA solutions at different concentrations (0.2 mmol/L, 0.4 
mmol/L, 0.8 mmol/L, and 1.6 mmol/L). After 3 days of 
pretreatment, all treatment groups except the CK (con-
trol without Cd and SA spraying) were treated with a 
Hoagland nutrient solution containing 50 µmol/L Cd 
and different concentrations of an SA solution. The treat-
ments were administered once every three days, for a 
total of three times. Different concentrations of the SA 
solution were sprayed four times (pretreatment once and 
treatment thrice after adding Cd) during the experiment. 
We ensured that at least 30% of the nutrient solution 
flowed out to prevent Cd accumulation in the nutrient 
bowl during nutrient solution replacement. The six treat-
ments applied in this experiment were as follows: CK (the 
control without Cd and SA spraying), Cd (50 µmol/L Cd 
and without SA spraying), Cd + SA0.2 (50 µmol/L Cd + 0.2 
mmol/L SA), Cd + SA0.4 (50 µmol/L Cd + 0.4 mmol/L 
SA), Cd + SA0.8 (50 µmol/L Cd + 0.8 mmol/L SA) and 
Cd + SA1.6 (50 µmol/L Cd + 1.6 mmol/L SA). The temper-
ature was maintained at 24/18 ℃ (day/night), with a rela-
tive humidity of 75 – 80%, a light cycle of 14/10 h (day/
night), and the strength of illumination in the artificial 
culture room was maintained at 300 µmol/m2/s through-
out the experiment. The pots were randomly rearranged 
regularly to reduce the impact of edge effects and effec-
tively prevent and control pests and diseases.

Sample analysis
Spinach samples were collected 10 days after the final 
exogenous SA treatment, and the growth and morpho-
logical indicators of the entire plants were evaluated. 
Subsequently, fresh root and shoot samples were freeze-
dried in liquid nitrogen and stored at -80 ℃ in an ultra-
low temperature freezer to determine physiological and 
quality indicators. Shoot, and root samples were fixed in 
an oven at 105 ℃ for 15 min and then dried at 75 ℃ to a 
constant weight to determine Cd content.

Morphological observations and determination of plant 
growth and biomass
Ten days after the last spray application of SA, we per-
formed a phenotypic assessment regarding the growth 
status and leaves of the spinach plants and recorded the 
observed phenotypic differences. The plant height and 
root length of spinach plants were measured to the near-
est millimeter using a ruler. Subsequently, the spinach 
shoots and roots were washed with tap water and rinsed 
thrice with deionized water, followed by oven-drying at 
105 ℃ for 15 min and 75 ℃ to constant weight for dry 
biomass determination.

Determination of photosynthetic pigment contents
The second and third functional leaves from the shoot 
tip (n = 3) were harvested to determine the contents of 

photosynthetic pigments (chlorophyll a, chlorophyll b, 
and carotenoid) using the ethanol and acetone extrac-
tion methods described previously [28]. Briefly, the leaves 
were soaked in equal volumes of ethanol and acetone for 
24 h until they were bleached. Then, the spectrophotom-
etry values were measured in the ethanol and acetone 
solutions and used to calculate the photosynthetic pig-
ment content.

Determination of photosynthetic parameters
The leaves used for the determination of photosynthetic 
pigment contents were used to determine the net photo-
synthetic rate (Pn), stomatal conductance (Gs), transpi-
ration rate (Tr), and intercellular CO2 concentration (Ci) 
using a LI-6400XT portable photosynthetic system (LI-
COR Inc., Lincoln, NE). The photosynthetic parameters 
were manually set at 25 ℃, 1000 µmol/m2/s light inten-
sity, and a CO2 concentration of 400 µmol/mol [28].

Determination of membrane peroxidation
The proline content in the plants was determined using 
the sulfosalicylic acid method, whereas the soluble pro-
tein and sugar contents were determined using the Coo-
massie brilliant blue G-250 method and anthrone-ethyl 
acetate methods, respectively. Malondialdehyde levels 
were determined using the thiobarbituric acid method. 
All assays were conducted according to the methods 
described by Tang et al. and Liang et al. [28, 29].

Determination of antioxidant enzyme activities and levels of 
reactive oxygen species
Antioxidant enzyme activity assays were conducted fol-
lowing previously described methods [29]. Superoxide 
dismutase (SOD) activity was evaluated using the nitro-
blue tetrazolium method, peroxidase (POD) activity 
using the guaiacol method, and catalase (CAT) activity 
using the ultraviolet (UV) absorption method. The O2

− 
and H2O2 contents were determined by the trace method 
using a reagent kit purchased from Beijing Solarbio Sci-
ence &Technology Co., Ltd. (Beijing Solarbio Science 
&Technology Co., Ltd. Beijing, China).

Determination of cd content
Plant samples (0.5  g) were digested in a 4:1 nitric acid: 
perchloric acid solution (v: v) for 12 h to a clear solution, 
filtered and diluted to a volume of 50 mL. Subsequently, 
the Cd content was then determined using an iCAP 6300 
ICP spectrometer (Thermo Scientific, Waltham, MA, 
USA) [30]. The translocation factor (TF) was determined 
as the shoot Cd content divided by the root Cd content 
[31].
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Determination of the relative expression of genes related to 
cd uptake and transport in spinach
Total RNA was extracted from all samples using an RNA 
prep pure plant kit (TIANGEN Biochemical Technol-
ogy Co., Ltd, Beijing, China), according to the manufac-
turer’s instructions. The RNA was reverse transcribed 
into cDNA using the TAKARA reverse transcription kit 
(TAKARA Bio Co., Ltd., Japan). All primers were synthe-
sized by Shenggong Biotechnology Co., Ltd. (Shenggong 

Biotechnology Co., Ltd., Beijing, China), as shown in 
Table 1. Biomarker 2X SYBR Green Fast qPCR Mix fluo-
rescent dyes were purchased from Yugong Biotechnology 
Co., Ltd (Yugong Biotechnology Co., Ltd., Lianyungang, 
China). The 18 S rRNA gene was used as an internal ref-
erence [32], and the 2−ΔΔCT method was used to calculate 
the relative expression levels of target genes.

Statistical analyses
Data were compiled and organized using Excel 2016 
software (Microsoft Corp., Redmond, WA, USA), and 
statistical analyses were conducted using SPSS 25.0 sta-
tistical software (IBM, Armonk, NY, USA). Differences 
across the groups were determined by one-way ANOVA 
followed by Duncan’s multiple range test at a p < 0.05 
significance level. Data are presented as the means of 
three biological replicates ± standard error (SE). Princi-
pal component and correlation analyses were performed 
to explore the relationship between various indicators. 
Figures were generated using Origin Pro 2021 software 
(Northampton, Massachusetts, USA).

Results
SA mitigates the impact of cd on plant biomass and growth
Cd stress significantly inhibited spinach growth com-
pared with the control (Fig.  1A) and caused yellowing 
of leaf margins and accelerated leaf senescence (Fig. 1B). 
Spinach plants treated with Cd exhibited significantly 
reduced plant height, root length, shoot biomass, 
and root biomass (Fig.  1C, D, E, F). Application of 0.8 
mmol/L SA alleviated the growth inhibition induced by 

Table 1  Primers used for real-time fluorescence quantitative 
polymerase chain reaction (RT-qPCR) validation
Gene Gene ID Forward primer 

(5’-3’)
Reverse 
Primer (5’-3’)

SoHMA3-like LOC110778383 ​C​A​A​T​G​G​C​T​A​G​C​A​
G​T​T​G​C​A​G​C

​C​T​A​T​A​G​T​G​C​C​A​
G​C​T​T​C​G​G​T​G​T

SoHMA4-like LOC110801776 ​G​C​A​T​C​A​G​A​G​A​G​G​
C​T​T​C​T​G​T​C​G

​C​C​A​A​T​C​C​C​C​A​
T​A​A​G​G​T​G​G​A​
A​G​C

SoNramp3.1-like LOC110798462 ​G​G​A​C​C​C​T​G​A​T​
G​A​A​A​A​T​G​A​A​G​
C​A​G​A

​T​G​C​T​T​C​C​A​C​C​
T​C​T​A​T​A​A​C​C​C​
C​A​T​A​T

SoNramp3.2-like LOC110793365 ​C​C​A​C​C​A​A​C​C​A​A​T​
T​A​T​T​C​G​A​G​G​A​T​G

​T​G​C​T​A​T​G​C​T​C​
A​T​C​A​G​A​A​A​C​
C​C​T​G

SoNramp6-like LOC110805077 ​A​T​G​G​C​G​A​C​G​T​C​A​
A​A​T​G​A​G​C​A​G

​A​G​A​C​A​A​G​G​A​
A​C​C​C​A​G​G​A​C​
C​C​A

SoNramp7.2-like LOC110801340 ​A​G​A​A​G​G​A​A​T​C​G​A​
G​A​A​G​G​T​C​T​G​G​A

​A​G​T​A​G​G​A​G​C​T​
T​C​A​T​C​A​A​A​G​T​
G​T​T​T​G

18 S ​C​C​A​T​A​A​A​C​G​A​T​G​
C​C​G​A​C​C​A​G

​A​G​C​C​T​T​G​C​G​A​
C​C​A​T​A​C​T​C​C​C

Fig. 1  Effects of Cd and SA on phenotype and growth of spinach plants under different treatment conditions. (A) Plant phenotype. (B) Leaf phenotype. 
(C) Plant height. (D) Root length. (E) Shoot biomass (DW). (F) Root biomass (DW). CK: the control without Cd and SA spraying; Cd: 50 µmol/L Cd and with-
out SA spraying; Cd + SA0.2: Cd + 0.2 mmol/L SA; Cd + SA0.4: Cd + 0.4 mmol/L SA; Cd + SA0.8: Cd + 0.8 mmol/L SA; Cd + SA1.6: Cd + 1.6 mmol/L SA. Data are 
average values ± SE of 3 replicate samples. Values with different letters are significantly different (p < 0.05). Same as below
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Cd on spinach and alleviated leaf senescence (Fig.  1A, 
B). Moreover, the addition of 0.8 mmol/L SA signifi-
cantly increased spinach plant height by 9.26% compared 
to the group treated with Cd alone (Fig.  1C). Spinach 
root length and biomass proportionally increased with 
increased SA concentrations applied under Cd stress 
(Fig.  1D, E). Application of 1.6 mmol/L SA increased 
spinach’s root length and root biomass by 36.04% and 
81.85% compared to the group treated with Cd alone 
(Fig.  1D, F). These results indicate that exogenous SA 
can alleviate the growth inhibition of Cd on spinach by 
promoting its growth, abrogating leaf senescence, and 
increasing plant height, root length, shoot biomass, and 
root biomass.

Exogenously applied SA application increases 
photosynthetic parameters
Cd stress significantly reduced the Ci, Tr, Gs, and Pn 
parameters in spinach leaves by 17.80%, 38.01%, 45.03%, 
and 30.77%, respectively, compared to the CK group 
(Fig. 2). Ci, Tr, and Gs levels in spinach leaves under Cd 

stress conditions initially increased and then decreased 
with an increase in the concentration of applied SA 
(Fig. 2A, B, C). Application of 0.8 mmol/L SA increased 
Ci, Tr, and Gs in spinach leaves by 21.54%, 63.82%, and 
95.43%, respectively, relative to the group only treated 
with Cd t (Fig. 2A, B, C). In addition, exogenous spray-
ing of 0.8 mmol/L and 1.6 mmol/L SA under Cd stress 
increased the Pn of spinach leaves by 36.15% and 36.83%, 
respectively, compared to the group treated with Cd only 
(Fig. 2D). These results indicate that the exogenous appli-
cation of SA could alleviate the damage caused by Cd 
stress to spinach by enhancing photosynthesis in leaves.

Exogenously applied SA increases the content of 
photosynthetic pigment constituents
Cd stress significantly reduced the contents of chloro-
phyll and carotenoid in spinach leaves relative to the CK 
group (Fig. 3). Chlorophyll a, chlorophyll b, total chloro-
phyll, and carotenoid contents in spinach leaves initially 
increased and then decreased with an increase in the 
concentration of exogenously applied SA under Cd stress 

Fig. 2  Effects of Cd and SA on photosynthesis of spinach plants under different treatment conditions. (A) Ci, intercellular CO2 concentration; (B) Tr, tran-
spiration rate; (C) Gs, stomatal conductance; (D) Pn, net photosynthetic rate
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(Fig. 3). Spray application of 0.8 mmol/L SA increased the 
contents of chlorophyll a, chlorophyll b, total chlorophyll, 
and carotenoid in spinach leaves by 42.64%, 47.61%, 
44.28%, and 56.97%, respectively, compared with the CK 
group (Fig.  3). These results indicated that the applica-
tion of exogenous SA abrogated the Cd-mediated photo-
synthetic inhibition in spinach by increasing the content 
of photosynthetic pigments in spinach leaves, with 0.8 
mmol/L SA identified as the optimal concentration.

Exogenously applied SA alleviates membrane lipid 
peroxidation and modulates the levels of osmoregulatory 
compounds
Plants treated with Cd alone exhibited a significant 
increase in the content of proline, malondialdehyde, 
soluble sugar, and soluble proteins by 52.26%, 34.28%, 
26.56%, and 98.42%, respectively, compared with the CK 
group (Fig.  4). Malondialdehyde, soluble sugar, and sol-
uble protein contents in the leaves of spinach subjected 
to Cd stress decreased gradually with an increase in the 
concentration of exogenously applied SA (Fig. 4B, C, D). 

Treatment of the plants with 1.6 mmol/L SA decreased 
the contents of proline, malondialdehyde, soluble sugars, 
and soluble proteins in spinach leaves by 23.49%, 20.70%, 
37.19%, and 24.07%, respectively, compared to plants 
treated with Cd alone (Fig. 4). Therefore, exogenous SA 
could alleviate the toxicity of Cd to spinach by reducing 
the levels of osmoregulatory and lipid peroxidation com-
pounds that accumulated under Cd stress.

Exogenously applied SA modulates the contents of 
reactive oxygen species
Cd stress markedly increased the levels of O2

− and H2O2 
in spinach by 48.68% and 40.29%, respectively, compared 
with the CK group (Fig.  5A, B). Increased exogenously 
applied SA concentration decreased the O2

·- content in 
plants under Cd stress. Treatment of spinach plants with 
0.8 mmol/L SA and 1.6 mmol/L SA decreased the O2

·− 
content by 18.58% and 24.93% compared to the group 
treated with Cd alone, respectively (Fig.  5A). Similarly, 
the H2O2 content decreased with an increase in SA con-
centration. Application of 0.4 mmol/L, 0.8 mmol/L, and 

Fig. 3  Effects of Cd and SA on photosynthetic pigment content of spinach plants under different treatment conditions. (A) Chlorophyll a content; (B) 
Chlorophyll b content; (C) Total chlorophyll content; (D) Carotenoid content
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1.6 mmol/L SA decreased the H2O2 content by 13.15%, 
16.41%, and 17.81% compared to the group only treated 
with Cd, respectively (Fig. 5B). These results indicate that 
SA could alleviate the oxidative damage caused by Cd in 
spinach leaves by reducing the levels of O2

− and H2O2 
under Cd stress conditions.

Exogenously applied SA modulated the activities of 
antioxidant enzymes to alleviate oxidative stress induced 
by Cd stress
Spinach leaves exhibited significantly increased POD, 
SOD, and CAT activities after treatment with Cd by 
93.65%, 4.24%, and 39.93%, respectively, compared with 
the CK group (Fig.  5C, D, E). Notably, SA significantly 
reduced the CAT activity of spinach leaves subjected to 
Cd stress. The CAT activity was reduced by 22.60% and 
15.56% after treatment with 0.8 mmol/L and 1.6 mmol/L 
SA, respectively, compared with the Cd-treated group 
(Fig.  5E). Moreover, the application of 0.4 mmol/L SA 
reduced the POD activity of spinach leaves under Cd 
stress by 3.44% compared with the Cd-treated group 
(Fig. 5C). SA enhanced the SOD activity of spinach under 

Cd stress, with 0.8 mmol/L and 1.6 mmol/L SA resulting 
in a 31.00% and 27.99% increase, respectively, compared 
with the group only treated with Cd (Fig.  5D). These 
results indicated that SA could decrease the oxidative 
damage to spinach caused by Cd by modulating the activ-
ities of antioxidant enzymes.

SA reduces cd accumulation in spinach shoots
Initially, the Cd content in shoots and the transloca-
tion factor of spinach treated with Cd decreased, but it 
subsequently increased in response to an increase in SA 
concentration (Fig.  6A, C). In contrast, no significant 
changes were observed in the Cd content of the root 
(Fig. 6B). Under Cd stress, the application of 0.4 mmol/L, 
0.8 mmol/L, and 1.6 mmol/L SA resulted in a decrease 
in Cd content in spinach shoots by 10.77%, 30.03%, and 
17.35%, respectively, compared to Cd treatment alone 
(Fig. 6A). Application of 0.8 and 1.6 mmol/L SA to spin-
ach plants subjected to Cd stress decreased Cd trans-
location by 31.79% and 21.96%, respectively (Fig.  6C). 
These findings indicated that exogenous SA could reduce 

Fig. 4  Effects of Cd and SA on the osmotic adjustment substance of spinach plants under different treatment conditions. (A) Proline; (B) Malondialde-
hyde; (C) Soluble sugar; (D) Soluble protein
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the Cd content in spinach shoots by reducing Cd trans-
location, with the most optimal effects observed at 0.8 
mmol/L SA.

Exogenously applied SA modulated the expression of 
genes implicated in cd uptake and transport
Cd stress significantly increased the relative expression 
levels of SoHMA3-like, SoHMA4-like, SoNramp3.2-like, 
and SoNramp6-like genes by 114.40%, 341.83%, 194.87%, 

and 258.22%, respectively compared to CK (Fig.  7A, B, 
C, D). Conversely, Cd stress down-regulated the rela-
tive expression of SoNramp3.1-like and SoNramp7.2-like 
compared to CK (Fig.  7F, I). Exogenous SA increased 
SoHMA3-like expression. Compared to Cd alone, 
SoHMA3-like expression increased by 38.45% and 49.69% 
after application of 0.8 and 1.6 mmol/L SA (Fig.  7D). 
On the contrary, exogenous SA application downregu-
lated the expression of SoHMA4-like, SoNramp3.1-like, 

Fig. 6  Effects of Cd and SA on cadmium (Cd) content and Cd translocation factor. (A) Cd content in the shoot, (B) Cd content in the root, (C) Transloca-
tion factor

 

Fig. 5  Effects of Cd and SA on reactive oxygen content and activity of antioxidant enzymes in spinach plants under different treatment conditions. (A)
O2

·− content; (B)H2O2 content, (C) Peroxidase (POD) activity, (D) Superoxide dismutase (SOD) activity, (E) Catalase (CAT) activity
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SoNramp6-like, and SoNramp7.2-like compared with the 
group treated with Cd only. The expression of SoHMA4-
like, SoNramp3.1-like, SoNramp6-like, and SoNramp7.2-
like decreased by 63.10%, 35.15%, 25.20%, and 68.03% 
after treatment with 1.6 mmol/L SA compared to the 
group treated solely with Cd (Fig. 7E, F, H, I). Based on 
these findings, SA could alleviate Cd stress on spinach by 
regulating the expression levels of genes involved in Cd 
absorption and transport.

Principal component (PCA) and correlation analysis
PCA was performed to explore the combined impact of 
the variation in various physiological indicators and the 
expression of genes involved in Cd uptake and transport 
in spinach responses under Cd stress after treatment with 
different concentrations of SA. PC1 and PC2 explained 
61.1% and 18.4% of the variance, respectively. The dif-
ferent treatments were distinctly clustered, with insig-
nificant differences observed between 0.8 mmol/L and 
1.6 mmol/L SA. However, the other treatments exhib-
ited significantly different clustering along the PCA axis 
(Fig. 8A). A significant negative correlation was observed 
between the CK and Cd treatments in PC1. Additionally, 
the 0.8 mmol/L and 1.6 mmol/L SA treatments exhibited 
significant negative correlations with the Cd treatment in 

PC1 and PC2. Most indicators lay on the negative side of 
PC1 and, at the same time, on the positive side of PC2 
(Fig.  8B). The Cd content in spinach, translocation fac-
tor, and expression of genes associated with Cd uptake 
and transport (SoHMA3-like, SoNramp3.2-like, and SoN-
ramp6-like) were positively related with PC1 and PC2 
(Fig. 8B). The PCA results showed that the impact of SA 
could be explained by changes in Cd content, photosyn-
thetic pigment content, and relative expression levels of 
genes involved in Cd uptake and transport.

Correlation analysis was performed to further com-
prehensively visualize the relationship between the vari-
ous indicators of Cd stress, with the results presented 
as a heat map (Fig. 8C). Plant growth and biomass were 
positively correlated with the contents of photosynthetic 
pigments (p ≤ 0.01) (Fig.  8C). Conversely, plant growth 
and biomass were significantly negatively correlated 
with CAT activity levels, reactive oxygen species con-
tent (H2O2 and O2

·−), Cd content, and the expression of 
SoHMA4-like and SoNramp6-like (p ≤ 0.01) (Fig. 8C). The 
Cd content was significantly positively correlated with 
the levels of proline, malondialdehyde, soluble proteins, 
POD, CAT activities, and H2O2 and O2

·−levels (Fig. 8C). 
In addition, POD and SOD activities and the expres-
sion of SoNramp3.1-like and SoNramp7.2-like exhibited 

Fig. 7  Effects of different exogenous SA on gene expression of SoHMA3-like (A), SoHMA4-like (B), SoNramp3.1-like (C), SoNramp3.2-like (D), SoNramp6 (E), 
SoNramp7.2-like (F) in spinach under cadmium (Cd) stress
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insignificant correlation with most indicators (p ≤ 0.01) 
(Fig. 8C).

Discussion
Crop yield can be majorly affected by the excessive accu-
mulation of heavy metals in the soil. Numerous studies 
have demonstrated that the exogenous application of dif-
ferent compounds can reduce heavy metal accumulation 

in vegetables [33]. The results of our study indicated that 
cadmium stress negatively affected the growth of spin-
ach, significantly reducing plant biomass and height and 
accelerating leaf senescence and yellowing at the leaf 
edges. Cd stress markedly affected wheat growth, causing 
a significant decrease in biomass accumulation, consis-
tent with the present results [34]. Recent studies reported 
the role of salicylic acid as a protective agent against 

Fig. 8  PCA analysis and correlation analysis. (A) PCA score plot; (B) PCA loading plot, (C) Correlation heat map
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abiotic (cold, heat, salt, heavy metal) stress and biotic 
stress in plants [35]. Notably, the application of salicylic 
acid could mitigate the adverse effects of high tempera-
tures on rapeseed by increasing the activity of antioxidant 
enzymes [36]. Salicylic acid conferred cadmium tolerance 
on soybean and rice seedlings [37, 38]. Li et al. demon-
strated that the Cd-stress-mediated growth inhibition 
in potatoes was significantly alleviated after exogenous 
SA application [11]. Similarly, the present study demon-
strated that the growth and biomass of spinach subjected 
to Cd stress significantly increased after treatment with 
0.8 and 1.6 mmol/L SA compared to plants subjected to 
Cd stress alone (Fig.  1). These findings indicate that SA 
alleviates the growth inhibition effect induced by Cd 
stress in spinach.

The photosynthesis process is extremely sensitive to 
changes in the environment. Cd stress affects plant pho-
tosynthesis through two processes. Firstly, Cd causes 
stomatal limitations, which limits the entry of CO2 into 
stomata or the release of O2, thereby affecting photo-
synthesis [39]. Secondly, Cd affects the process through 
non-stomatal limitations by reducing chlorophyll con-
tent through the disruption of the thylakoid structure 
in chloroplasts, ultimately inhibiting photosynthesis 
[40]. In our study, cadmium stress substantially reduced 
the levels of photosynthetic parameters and contents of 
photosynthetic pigments. As demonstrated in a previ-
ous study, exogenous SA reversed the reduction in plant 
photochemical efficiency induced by Cd stress and allevi-
ated Cd toxicity in Arabidopsis thaliana [17]. In addition, 
Obono et al. reported that under cadmium stress condi-
tions, exogenously applied SA significantly increased the 
chlorophyll content in Chinese cabbage, thereby alleviat-
ing Cd toxicity in the plants [41]. In the current study, 0.8 
and 1.6 mmol/L SA significantly enhanced the photosyn-
thetic rate of spinach under cadmium stress conditions 
and increased the contents of photosynthetic pigments, 
consistent with previous findings. These observations can 
be attributed to the effects of SA in alleviating Cd stress 
in plants by increasing the contents of photosynthetic 
pigments, such as chlorophyll, and enhancing carba-
mylating enzyme activities, ultimately increasing the rate 
of photosynthesis [42–44].

Cadmium stress promotes excessive production of 
H2O2 and O2

− in plants, which can damage proteins, 
lipids, and other biomolecules, exacerbating the Cd tox-
icity in plants [45]. Malondialdehyde is a critical indica-
tor of cellular lipid peroxidation, offering insights into 
the degree of damage to plant cell membranes [46]. Su 
et al. observed that Cd stress significantly increased 
H2O2 and O2

·− and proline contents in tobacco leaves 
and roots [40]. In the current study, Cd stress signifi-
cantly increased the content of reactive oxygen species, 
antioxidant enzyme activities, and the levels of proline, 

malondialdehyde, soluble proteins, and soluble sug-
ars in spinach leaves. Previous studies reported that the 
application of SA could alleviate Cd stress by enhancing 
antioxidant enzyme activities and inhibiting the produc-
tion of excessive H2O2 and O2

·− in plants [17, 47]. More-
over, Guo et al. observed that exogenous application of 
SA in tomato subjected to Cd stress reduced malondi-
aldehyde content and increased CAT activity [48]. SA 
can act directly as an antioxidant, scavenging excessive 
H2O2 produced in peas under Cd stress conditions [49]. 
A study by Lu et al. demonstrated that SA significantly 
reversed the increase in SOD, POD, and CAT activities 
induced by Cd stress in duckweed leaves [50]. Similarly, 
we observed that exogenous SA alleviated Cd toxicity in 
spinach by reducing the contents of reactive oxygen spe-
cies, malondialdehyde, soluble sugars and soluble pro-
teins, and CAT activity.

Application of SA to plants can inhibit the transport 
of Cd from the roots to the aboveground parts. For 
example, a study by Raza et al. showed that SA mark-
edly reduced Cd uptake and ameliorated Cd-induced 
inhibition of radish root growth [51]. Similar results 
were observed in wheat, ryegrass, and rice [52–54]. The 
results of this study indicate that SA reduced the Cd con-
tent and translocation factor in the aboveground organs 
of spinach, which is consistent with previous research 
findings. Research has demonstrated that plants lack 
transport proteins specifically designated for Cd trans-
port in plants. Cd is transported through ion transport 
proteins, such as Nramp and HMA family proteins [55, 
56]. Majumdar et al. demonstrated that the application 
of SA in rice seedlings subjected to Cd stress upregu-
lated OsHMA3 and OsPCS1 genes and downregulated 
OsNRAMP2 [57]. Moreover, Huang et al. reported that 
SA could alleviate the toxicity of Cd on rice by modu-
lating OsNRAMP5 and OsHMA3 gene expression [38]. 
Our research results indicate that SA potentially reduced 
Cd absorption in spinach leaves by downregulating the 
relative expression of SoHMA4-like, SoNramp3.1-like, 
SoNamp6-like, and SoNramp7.2-like genes. Thus, exog-
enous SA can reduce spinach shoot Cd uptake. SA can 
mitigate cadmium toxicity in spinach by reducing the 
content of reactive oxygen species, promoting photo-
synthesis, and downregulating the expression of genes 
involved in Cd transport (Fig. 9). PCA analysis and cor-
relation analysis indicated that the Cd content was sig-
nificantly positively correlated with the proline levels, 
malondialdehyde, soluble proteins, POD activity, CAT 
activity, and reactive oxygen species content. However, 
the mechanisms underlying these results should be fur-
ther studied.
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Conclusions
Based on the results of our study, 0.8 and 1.6 mmol/L 
of exogenously applied SA alleviated the inhibition of 
spinach growth induced by Cd stress. Furthermore, SA 
enhanced photosynthesis and increased the levels of pho-
tosynthetic pigments in spinach under Cd stress. More-
over, SA could abrogate the oxidative damage induced 
by Cd by reducing the contents of reactive oxygen spe-
cies and osmoregulatory substances. In addition, 0.8 and 
1.6 mmol/L SA application decreased Cd absorption in 
spinach leaves by downregulating the relative expression 
of SoHMA4-like, SoNramp3.1-like, SoNramp6-like, and 
SoNramp7.2-like genes, resulting in reduced Cd content 
in spinach shoots. In summary, the application of 0.8 and 
1.6 mmol/L SA could effectively mitigate the toxicity of 
Cd in spinach.
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