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Abstract 

Background Grain number (GN) is one of the key yield contributing factors in modern wheat (Triticum aestivum) vari-
eties. Fruiting efficiency (FE) is a key trait for increasing GN by making more spike assimilates available to reproductive 
structures. Thousand grain weight (TGW) is also an important component of grain yield. To understand the genetic 
architecture of FE and TGW, we performed a genome-wide association study (GWAS) in a panel of 236 US soft faculta-
tive wheats that were phenotyped in three experiments at two locations in Florida and genotyped with 20,706 single 
nucleotide polymorphisms (SNPs) generated from genotyping-by-sequencing (GBS).

Results FE showed significant positive associations with GN, grain yield (GY), and harvest index (HI). Likewise, TGW 
mostly had a positive correlation with GY and HI, but a negative correlation with GN. Eighteen marker-trait associa-
tions (MTAs) for FE and TGW were identified on 11 chromosomes, with nine MTAs within genes. Several MTAs associ-
ated with other traits were found within genes with different biological and metabolic functions including nuclear 
pore complex protein, F-box protein, oligopeptide transporter, and glycoside vacuolar protein. Two KASP markers 
showed significant mean differences for FE and TGW traits in a validation population.

Conclusions KASP marker development and validation demonstrated the utility of these markers for improving 
FE and TGW in breeding programs. The results suggest that optimizing intra-spike partitioning and utilizing marker-
assisted selection (MAS) can enhance GY and HI.
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Background
Wheat is one of the most widely grown crops worldwide 
in terms of both area and quantity of production [1]. It 
is a critical component of global food security, fulfilling 
approximately 20% of the  protein and calorie demand 
of the world population [2, 3]. At present, the  average 
genetic gain in wheat is lower than 1% per annum; how-
ever, 2% of annual yield gain is required [4] to meet the 
future demand of a 9.5 billion population by 2050 [5]. As 
cultivable land is already declining in many areas due to 
soil erosion and degradation, it is crucial to improve the 
genetic yield potential of crops if we are to avoid further 
loss of natural ecosystems [6, 7]. A better understanding 
of the genetic relationship between yield and associated 
traits may facilitate further breakthroughs in developing 
high-yielding wheat varieties.

Grain number per unit area (GN) is one of the impor-
tant determinants of grain yield in wheat [5, 8, 9]. Sub-
stantial improvement of GN is essential for achieving 
large genetic gains in wheat yield as grain filling is limited 
mainly by the sink capacity in modern wheat cultivars 
under optimal conditions [5, 10]. Therefore, exploring the 
physiology and genetics involved in GN determination 
is necessary for grain yield improvement in wheat. GN 
has a positive relationship with spike partitioning index 
(SPI) and can be improved by selecting for higher spike 
dry weight or SPI [5, 7, 11, 12]. A higher proportion of 
biomass to the spike during anthesis, which is largley due 
to reduced height in the past, has resulted in the survival 
of more fertile florets and greater GN [7, 13, 14]. As the 
modern varieties are mostly within the optimum stature 
(0.7–1 m) [15, 16], new ways to improve the grain num-
ber need to be studied.

In addition to SPI driving greater spike biomass at 
anthesis, GN may vary among genotypes due to another 
important partitioning trait, namely fruiting efficiency 
(FE). FE is the ratio of the grain number at maturity and 
spike dry weight at anthesis and can be used as an alter-
native way to explain GN determination. FE refers to the 
efficiency of a plant in converting the resources that are 
allocated for growing spikes before anthesis into grains 
[7, 17, 18]. Increased allocation of assimilates during 
spike growth to reproductive structures is associated 
with increased survival of distal florets and grain forma-
tion before anthesis [7, 12, 17], and with decreased alloca-
tion to structural components of a spike (rachis, glumes, 
etc.). Therefore, improved FE is a result of efficient intra-
spike partitioning through which assimilates are diverted 
towards florets rather than spike structural components 
[7, 19]. Wide genetic variation for intra-spike partitioning 
traits such as glume partitioning index (GPI), lemma par-
titioning index (LmPI), and palea partitioning index (PPI) 
has been reported [19, 20]. Although more attention has 

been given to SPI for effectively increasing harvest index 
(HI) in wheat, FE could be employed as a complementary 
trait for improving GN and HI [7, 9, 21–24]. A positive 
association between FE and GN has been reported in 
many studies [8, 9, 25]. Due to a wide range of variation 
among genotypes [7, 8, 18, 24, 26], along with responsive-
ness to selection, FE is a novel physiological trait with 
huge potential for improving GN, grain yield (GY), and 
harvest index (HI). As we examine FE and its influence on 
GN, it is relevant to consider a possible trade-off between 
SPI and FE [8, 26] because some studies have shown 
a negative relationship between these traits [7, 26, 27] 
although it could not be confirmed in some other studies 
[7, 8]. However, wheat cultivars that combined both high 
FE and SPI have been reported [19, 20]. Likewise, some 
studies reported a negative relationship between FE and 
grain weight (GW) [16, 19, 28], but they were unrelated 
in other studies [22]. Improvement in GN through FE 
would be discouraged if GW is highly reduced due to the 
trade-off between FE and GW [7, 16]. Hence, it is impor-
tant to study the possible trade-off between FE and GW 
in wheat. It should also be mentioned that measuring FE 
is a time-consuming task that requires data collection at 
two stages: measuring spike dry weight at anthesis and 
counting grain number at maturity [7, 24]. FE measure-
ment is also a destructive process, both of which make 
it impractical to be applied in progeny selection [7, 
29]. Identifying genetic loci controlling FE and associ-
ated markers will make it possible to select FE through 
marker-assisted selection (MAS) to improve HI and GY 
in breeding programs.

Genome-wide association study (GWAS) is one of the 
most popular methods for deciphering genetic architec-
tures of complex traits in plants [30]. With advancements 
in next-generation sequencing (NGS) technologies, low-
cost and high-density genome-wide single nucleotide 
polymorphisms (SNPs) make it possible for most breed-
ing programs to use the genomic tools in routine breed-
ing selection to accelerate crop improvement [30, 31]. To 
date, only limited research on understanding the genetic 
basis of FE in wheat has been reported. The purposes of 
this study are to (i) evaluate associations between FE and 
HI, GY and GN in a panel of US soft wheat, (ii) study dry 
matter partitioning amongst spike structural components 
in a small subset of accessions from the panel, (iii) use 
GWAS to identify QTLs and molecular markers associ-
ated with FE, and (iv) validate KASP markers developed 
from the QTL information in a new population.

Results
Genetic variation and heritability
A combined analysis of variance (ANOVA) displayed sig-
nificant genotypic variations for all the measured traits 
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(Table S1) in Experiment I. Significant effects of environ-
ments and genotype-by-environment interactions on FE 
and TGW were observed. The distribution of TGW val-
ues from different environments are presented in Fig. 1. 
The mean phenotypic values ranged from 33.69 (E1_Q17) 
to 49.56 (E1_Q18) grains  g−1 of spike dry weight at A + 7d 
for FE [32]. and 31.53 (E1_C18) to 38.84 g for the TGW. 
TGW had a higher broad-sense heritability of 0.75 com-
pared to 0.25 for FE [32].

In Experiment II, ANOVA showed significant variation 
among different intra-spike partitioning traits (Table S2). 
Significant environmental effects were observed for all 
traits, and genotype-by-environment interaction effects 
were significantly different for most traits (Table S2). FE 
ranged from 36.19 to 46.46 grains  g−1 (Table  1). Like-
wise, the glume partitioning index (GPI) varied from 0.21 
to 0.24, the lemma partitioning index (LmPI) from 0.24 
to 0.25, and the palea partitioning index (PPI) remained 
constant at 0.13. The awn partitioning index (API) ranged 
from 0.18 to 0.24 (Table  1). The sterile floret partition-
ing index (FPI) and the rachis partitioning index (RPI) 
ranged from 0.03 to 0.04 and 0.15 to 0.18, respectively. 
The broad-sense heritability for intra-spike partitioning 

traits was generally high, with the exception of FPI. API 
showed the highest heritability of 0.89, followed by GPI 
(0.88) and RPI (0.87). FE had an H2 value of 0.18 com-
parable to our association studies. These results are sum-
marized in Table 1.

Fig. 1 Distribution of TGW, thousand grain weight values. E1_C18, E1_Q17, E1_Q18, and E1_Combined refers to Citra 2018, Quincy 2017, Quincy 
2018, and combined dataset for experiment I

Table 1 Summary of phenotypic adjusted means and 
heritability (Experiment II)

FE fruiting efficiency in grains  g−1 of spike dry weight at anthesis + 7 days, GPI 
glume partitioning index, LmPI lemma Partitioning index, API awn partitioning 
index, PPI palea partitioning index, FPI floret partitioning index, RPI rachis 
partitioning index. E2_C18, E2_C19, E2_Q18, and E2_Combined refers to 
Citra 2018, Citra 2019, Quincy 2018 and combined dataset respectively for 
experiment II

Traits E2_C18 E2_C19 E2_Q18 E2_Combined H2

FE 36.19 46.46 45.46 40.88 0.18

GPI 0.22 0.21 0.24 0.22 0.88

LmPI 0.25 0.25 0.24 0.25 0.7

API 0.18 0.24 0.18 0.23 0.89

PPI 0.13 0.13 0.13 0.13 0.69

FPI 0.04 0.03 0.04 0.03 0.33

RPI 0.18 0.17 0.15 0.17 0.87
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Phenotypic correlations among traits
FE showed significantly positive correlations with GY 
(r = 0.27** to 0.48***), GN (r = 0.47*** to 0.54**), and HI 
(r = 0.35** to 0.51***) [32], and negative correlation with 
TGW (r = −0.12 to 0.26**) (Table  2). Likewise, TGW 
showed significant positive correlations with HI (r = 0.15* 
to 0.26***) and GY (r = 0.21** to 0.24**), but negative cor-
relation with GN (r = −0.31** to − 0.34**) and FE (−0.17* 
to −0.36**) (Table  2). Path coefficient analysis showed 
both FE and TGW had significant positive effects on HI 
(Table 3). Furthermore, FE had a positive indirect effect 
on HI through GN whereas TGW had negative indirect 
effects on GN.

FE also had negative correlations with various 
intra-spike portioning traits including GPI (r = − 0.25 
to − 0.73*), API (r = − 0.16 to − 0.64*), FPI (r = −0.08 
to − 0.75*), and RPI (r = −0.15 to −0.44) (Fig.  2). GPI 
showed positive correlations with FPI (r = 0.02 to 0.75*) 
and RPI (r = 0.29 to 0.82*). Likewise, LmPI had positive 
correlations with RPI (r = 0.01 to 0.30). Path coefficient 
analysis indicated that GPI, API, and LmPI had negative 
direct effects on FE in all datasets, except for E2_C18. In 
contrast, PPI had positive direct effects on FE (Table S3), 
while FPI showed negative direct effects on FE in all data-
sets, except for E2_Combined.

PCA biplot analysis
The principal component analysis (PCA) biplot further 
supported the association between FE and other traits 
(HI, GN, TGW, API, FPI, GPI, RPI) from correlation 
analysis. In the first PCA, HI was close to GY, and FE was 
close to GN. The first two PCs explained 50.4 to 55.1% 
and 20.2 to 28.5% of the variation, respectively (Fig.  3). 

For intra-spike partitioning traits, the first two PCs 
explained 28.6 to 53% and 21.1 to 29.6% of the variation, 
respectively (Fig. 4). Furthermore, FPI, GPI, and RPI were 
clustered together, away from a cluster of LmPI and PPI 
whereas FE and API didn’t have any cluster.

Genome‑wide association study and gene annotation
Population structure and LD decay analysis using 20,706 
SNPs were performed earlier [33]. To summarize, a total 
of 7,935 (38.32%), 7,496 (36.20%), and 5,275 (25.48%) 
SNPs were found in A, B, and D genomes, respectively. 
The PC analysis showed an admixture among genotypes 
with three clusters. The LD decay was found to be 3.4 
Mbp for whole genome.

Thirteen MTAs for FE were identified on 10 chromo-
somes (1D, 2A, 2B, 3A, 3D, 5D, 6A, 6D, 7A, and 7D) 
(Fig.  5, Fig.  6, Figure  S1a) with phenotypic variation 
explained (PVE) ranging from 10.34 to 17.56% (Table 4). 
Additionally, 5 MTAs on chromosomes 2A, 2B, 3A, 5B, 
and 6D (Fig.  5, Fig.  6, Figure  S1b) were significant with 
PVE ranging from 9.62 to 14.92% for TGW (Table  4). 
Two MTAs for FE were repeated in two environments.

Functional gene annotation of the significant MTAs 
in the IWGSC RefSeq v1.0 reference genome identified 

Table 2 Pearson’s correlation coefficient between phenotypic 
traits using Best Linear Unbiased Estimates (Experiment I)

HI harvest index, GY grain yield in kg  ha−1, GN Grain number  m−2, FE fruiting 
efficiency in grains  g−1 of spike dry weight at anthesis + 7 days, TGW  thousand 
grain weight in g. E1_C18, E1_Q17, E1_Q18, and E1_Combined refers to Citra 
2018, Quincy 2017, Quincy 2018 and combined dataset respectively for the 
experiment I. *, **, *** denotes significant at 0.05, 0.01 and 0.001 significance 
levels, respectively

Traits HI GY GN TGW 

E1_C18 TGW 0.26** 0.24** −0.34** 1

FE 0.51*** 0.27** 0.52*** −0.36**

E1_Q17 TGW 0.15* 0.03 −0.31** 1

FE 0.48*** 0.48*** 0.54*** −0.23**

E1_Q18 TGW −0.08 −0.04 −0.08 1

FE 0.47*** 0.38** 0.47*** −0.17*

E1_Combined TGW 0.10 0.21** −0.07 1

FE 0.27** 0.36** 0.43*** −0.12

Table 3 Direct and indirect effects on HI identified through path 
coefficient analysis (Experiment I)

HI harvest index, GN Grain number  m−2, FE fruiting efficiency in grains  g−1 of 
spike dry weight at anthesis + 7 days, TGW  thousand grain weight in g. E1_C18, 
E1_Q17, E1_Q18, E1_Combined refers to Citra 2018, Quincy 2017, Quincy 2018 
and combined dataset respectively for experiment I. *, **, *** denotes significant 
at 0.05, 0.01 and 0.001 significance levels, respectively

E1_C18

Traits Direct effect GN FE TGW 

GN 0.434*** 0.434 0.257 −0.199

FE 0.494*** 0.226 0.494 −0.216

TGW 0.595*** −0.145 −0.150 0.595

E1_Q17

Traits Direct effect GN FE TGW 

GN 0.426*** 0.426 0.186 −0.115

FE 0.341*** 0.232 0.341 −0.090

TGW 0.376*** −0.130 −0.082 0.376

E1_Q18

Traits Direct effect GN FE TGW 

GN 0.336*** 0.336 0.148 0.000

FE 0.31*** 0.159 0.317 0.00

TGW 0.001 −0.026 −0.054 0.001

E1_Combined

Traits Direct effect GN FE TGW 

GN 0.353*** 0.353 0.101 −0.030

FE 0.215*** 0.165 0.215 −0.030

TGW 0.160** −0.066 −0.040 0.160
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several putative candidate genes, and their physical loca-
tions. Several MTAs were within genes with different 
biological and metabolic functions including zinc finger, 
F-box protein, nuclear pore complex protein, Oligopep-
tide transporter, and Fasciclin-like arabinogalactan pro-
tein (Table S4). Likewise, five genes that are in proximity 
(within 200 kb) of significant SNPs for FE were also found 
(Table S5).

KASP marker validation
A total of 7 KASP markers were developed and used for 
validation. Of these, one each newly developed KASP 
markers showed significant mean difference in FE and 
TGW traits, respectively, between two allelic groups in 
a validation population (Fig.  7 and Table  S6). The VEP 

search in Ensembl showed that the two KASP markers 
were associated with un-identified protein or intergenic 
sequences. The KASP markers for both TGW and FE also 
showed significant phenotypic mean difference in other 
traits, particularly the TGW marker showed significant 
phenotypic mean difference in grain yield (Table S6).

Discussion
The yield increase in the ‘Green Revolution’ era was 
mostly owing to an increase in HI; however, there has 
been little progress in improving HI in recent decades. 
The HI of currently used wheat cultivars remains at about 
0.45 to 0.51 in spring wheat and 0.5–0.55 in winter wheat, 
which is lower than the theoretical upper limit of 0.62 [9, 
34, 35]; therefore, there is still scope for improvement 

Fig. 2 Principal component analysis biplot of measured traits using best linear unbiased estimates (BLUEs). HI, harvest index; GY, grain yield; GN, 
Grain number  m−2; FE, fruiting efficiency; TGW, thousand grain weight. E1_C18, E1_Q17, E1_Q18, E1_Combined refers to Citra 2018, Quincy 2017, 
Quincy 2018, and combined dataset respectively for experiment I
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of HI in wheat and its stabilization across seasons and 
environments. Some recent studies have demonstrated 
that increased biomass had a positive association with 
grain yield, but a negative association with HI [34, 36]. 
To improve HI through converting increased biomass 
towards grain yield, it is essential to study novel parti-
tioning traits that enable discrimination between “use-
ful” and “non-useful” biomass [5]. The number of grains 
(sink strength) is a major trait for GY and HI improve-
ment. There is strong evidence that during grain filling, 
wheat yield (grain weight per spike and spikes per unit 
area) is sink limited because carbon accumulation is lim-
ited by the total storage capacity of the grains. Therefore, 
improving the grain number per unit area is an important 

target in the genetic improvement of HI and yield poten-
tial. Additionally, grain number has more plasticity than 
grain weight and, therefore, is more responsive to genetic 
and environmental changes than grain weight [15, 37]. 
Understanding the genetic mechanisms of component 
traits that control grain number is pertinent for further 
improvement of GY and HI. Fruiting efficiency has been 
proposed as one of the novel promising traits that could 
be exploited to further increase the GN and HI [24].

The current study found a significant variation of FE in 
the US facultative soft wheat, which indicated the scope 
for improvement of this particular trait through breed-
ing. This result agrees with several other studies [7, 19, 
24, 38, 39]. Positive associations of wheat FE with GN, 

Fig. 3 Principal component analysis biplot of measured traits using best linear unbiased estimates (BLUEs). FE, fruiting efficiency; GPI, glume 
partitioning index; LmPI, lemma Partitioning index; API, awn partitioning index; PPI, palea partitioning index; FPI, floret partitioning index; RPI, rachis 
partitioning index. E2_C18, E2_C19, E2_Q18, and E2_Combined refers to Citra 2018, Citra 2019, Quincy 2018 and combined dataset respectively 
for experiment II
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HI, and GY which have been observed in the current 
study and other recent studies [19, 24] were supported 
by PCA analysis that clustered these traits together. The 
positive physiological relationship between GN and FE 
has been reported [7, 8, 15, 24], with fruiting efficiency 
measuring the efficiency with which resources are used 
to set grains [7]. Higher FE indicates a declined abortion 
rate and increased survival of floret primordia during the 
stem elongation phase before anthesis [7, 15, 24], which 
eventually increases the likelihood of fertile florets to set 
grains [15, 37]. The low heritability of FE in our study 
suggested the complex nature and high environmental 
influence. The heritability estimate can be improved by 
including more replications, consistent environments, 

and precise measurement. However, various studies have 
demonstrated reasonable heritability [39–41] and a posi-
tive response to the selection of the FE trait [7]. Addition-
ally, positive transgressive segregation reported for FE [7, 
8, 39] suggested its applicability in further improvement 
of GN through selecting genotypes for higher FE. Previ-
ous studies have demonstrated that HI could be improved 
by (a) increasing SPI; and (b) reducing dry matter parti-
tioning towards competing plant parts specifically inter-
node 2 and/or internode 3 [20]. Reducing second or third 
internode length to increase HI might have to involve 
height reduction, however, further reducing already opti-
mum wheat plant height (0.7–1  m) may penalize wheat 
yield [15, 16]. This could limit the extensive use of stem 

Fig. 4 Pearson’s correlation coefficient between phenotypic traits using best linear unbiased estimates (Experiment II). FE, fruiting efficiency 
in grains  g−1 of spike dry weight at anthesis + 7 days; GPI, glume partitioning index; LmPI, lemma Partitioning index; API, awn partitioning index; PPI, 
palea partitioning index; FPI, floret partitioning index; RPI, rachis partitioning index. E2_C18, E2_C19, E2_Q18, E2_Combined refers to Citra 2018, 
Citra 2019, Quincy 2018 and combined dataset respectively for the experiment II
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partitioning traits up to a specific point. Thus, improv-
ing FE could be a pragmatic way to increase GN and HI 
through the improvement of the spike partitioning index 
and the internode partitioning index in wheat. Pyramid-
ing QTLs linked to these partitioning traits [33] in high 
FE genotypes could further boost harvest index and grain 
yield.

Utilization of FE in the breeding program may need to 
consider two potential trade-offs: spike weight at anthe-
sis and grain weight [24, 39]. A negative association has 
been reported between FE and SPI in some studies [7, 
18, 26, 27]. The negative correlation between SPI and 
FE suggests that selection for high FE may reduce SPI. 
However, different authors suggested the possibility 
of identifying genotypes with high SPI and FE [5, 7, 19, 
20]. Marker-assisted selection may facilitate combining 
the genes that control these traits. In the current study, 
a negative relationship between TGW and FE suggests 
an increase in FE resulted in a decrease in grain weight, 
consistent with most previous studies [15, 16, 19, 24, 28, 
39] except that González et  al. (2014) [22] did not find 

such an association. A clear trade-off occurs only if grain 
weight at each floral position is reduced as a result of an 
increase in FE, which would reduce GY [7, 42]. However, 
some studies suggested that the reduction in grain weight 
owing to increased FE usually occurred at distal smaller 
florets that were infertile in low FE genotypes and the 
proximal florets remained unaffected, thereby the reduc-
tion in the average grain weight is not a trade-off, but due 
to increased fertile florets [7, 10, 15, 39]. Improving vas-
cular connections within the rachilla can reduce resist-
ance and improve floret fertility of more distal florets, 
therefore, minimizing such trade-offs [36, 43].

Among 13 MTAs for FE, five MTAs were in genes 
(Table  4, Table  S4). These putative candidate genes, 
along with nearby genes (Table  S5), can be used to 
develop selectable markers for further improvement of 
FE. Since the heritability of FE was found to be relatively 
low, marker-assisted selection would play an important 
role in the improvement of this trait. Out of 5 MTAs 
identified for TGW, 4 MTAs were found within genes 
(Table  4, Table  S4). Previous studies identified QTLs/

Fig. 5 Marker-trait associations across three genomes in US soft wheat association panel
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MTAs responsible for TGW on 2A [44–46], 2B [33, 46], 
3A [33, 47, 48], and 6D [46]. An MTA S6D_24028817 
was in a gene TraesCS6D02G049500 which is annotated 
as an Oligopeptide transporter protein (Table  S4). Oli-
gopeptide transporters (OPTs) are membrane-localized 
proteins with various biological processes, such as sub-
strate transportation [49]. An MTA S2B_644162831 
found within gene TraesCS2B02G450900 was annotated 
as a Nucleoporin protein (Table  S4). Nucleoporin pro-
teins have different functions such as nucleocytoplasmic 

Fig. 6 Overview of significant markers trait associations identified on each chromosome for phenotypic traits obtained from GWAS. FE, fruiting 
efficiency; TGW, thousand grain weight

Table 4 Summary of significant marker-trait associations for FE 
and TGW 

FE fruiting efficiency, TGW  thousand grain weight

Traits SNPs Chromosomes PVE

FE 13 1A, 2A, 2B, 3A, 3D, 5D, 6A, 
6D, 7A, 7D

10.34–17.56

TGW 5 2A, 2B, 5B, 6D 9.62–14.92
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transport, cell differentiation, cell signaling, and gene 
expression [50–52]. Likewise, an MTA S6D_11346685 
was found in a gene TraesCS1B02G401200 which anno-
tates for the F-box family protein. This protein plays a 
role in the developmental and physiological processes 
such as spike development, and pollen recognition in 
plants [53, 54]. These genes, along with those in close 
proximity to significant SNPs (Table S5) and their associ-
ated functions denote their potential for further manipu-
lation to improve TGW. In addition, we found significant 
SNPs associated with FE which had an allelic effect in the 
same direction on other traits along with FE.

Negative associations were observed between FE and 
intra-spike partitioning traits including awn, glume, ster-
ile floret, and rachis partitioning. These non-grain sinks 
compete with florets for assimilates, resulting in lower 
FE. The negative relation between RPI and FE could be 
taken as an example of such competition. Both GPI and 
sterile FPI have a significant negative correlation with FE. 
Although the physiological basis for that relationship is 

not clear, high negative indirect effects through rachis 
PI seem to be a driving force in both cases. The highly 
negative direct effect of awn PI on FE shows that the for-
mation of awns and fertile florets competes for the same 
source of assimilates in a spike, and investment of dry 
mater on awns ultimately reduces FE. Awns can increase 
spike surface area by up to 50% [55], and contribute to 
total photosynthesis [56, 57]; whereas awnletted wheat 
may produce significantly more grains, therefore, awn 
elimination could potentially enhance grain numbers 
[24, 58–60]. Since grain yield in wheat is mostly sink lim-
ited during grain filling, photosynthetic contribution by 
awns towards grain yield/number might not be enough 
to counterbalance the extent of assimilate investment 
towards their production and physiological maintenance.

Higher FE could be achieved through a preferen-
tial allocation of spike DM to the florets with a propor-
tional reduction in partitioning to non-productive sinks 
or other structural parts (rachis, glumes, awns). It can 
be assumed that competition for assimilates leads to 

Fig. 7 Boxplot representing KASP markers showed significant allelic effect in the diversity population. The KASP markers were identified using 
a studentized t-test (P-value < 0.05) in validation panel
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the shortage of assimilates, resulting in floret primor-
dia abortion [61]. Higher availability of assimilates to 
florets improves the probability to turn labile floret pri-
mordia into fertile florets, which results in increased FE 
and GN [24]. In addition, increasing spike sugar content 
[19, 27, 62] and modifying plant signaling responses [17, 
19, 20] also increase FE and GN. In summary, FE can 
be increased through decreasing intra-spike dry matter 
partitioning to awn, rachis, and glume, and potentially 
increasing partitioning to the lemma and palea within 
the spikelet morphological components. This optimized 
partitioning would eventually have a positive impact 
in reaching the theoretical HI limit of above 60%. Two 
KASP markers, one significantly contributing to TGW 
and the other to FE, could be used for future breeding 
programs intended to select elite lines for grain partition-
ing traits. Additional research is needed to fine mapping 
region encompassing these KASP markers to determine 
the underlying genes and their subsequent functions.

Conclusions
Results showed that FE is strongly associated with GN, HI, 
and grain yield. Increasing FE would most likely contribute 
to higher GN. Reducing glume, awn, and rachis partition-
ing and increasing partitioning of lemma and palea would 
further increase FE and GN. GWAS analysis suggested 
that the genetic control of FE is complex and controlled 
by several putative QTL regions. GWAS analysis success-
fully identified 18 markers significantly associated with FE 
and TGW. Nine MTAs for FE and TGW were identified 
to be within genes which are potential targets of selection 
in marker-assisted breeding to capitalize genetic variation 
for the trait. KASP marker development and validation 
would facilitate transfer of these QTL into adapted cultivars 
through a marker-assisted breeding to improve GY and HI.

Methods
Trait evaluation in field experiments
Three experiments were conducted in two locations in 
northern and north-central Florida. The genetic materi-
als and environments involved in the first experiment 
(Experiment I) have been described in Shahi et. al (2022) 
[32]. In brief, a panel of 236 facultative soft wheat elite 
lines and varieties were planted in the Plant Science 
Research and Education Unit (PSREU) in Citra, Florida 
in 2017–2018, and in the North Florida Research and 
Education Center (NFREC) in Quincy in 2016–2017 
and 2017–2018 using an augmented design with three 
repeated checks, SS8641 (PI 674197), AGS2000 (PI 
656845), and Jamestown (PI 653731) to control spatial 
variability. These check cultivars are popular commer-
cial soft wheat varieties grown throughout the southern 
and south-eastern US. The checks were replicated twice 

in each block. The weather conditions of experiments are 
provided in Table S7.

Measurement of traits HI, GY, GN, and FE has already 
been described in Shahi et al. (2022) [32]. Days to anthe-
sis was taken for each plot as the days from planting to 
when 50% of plants flowered [63]. At 7 days after anthe-
sis (A + 7d, Zadoks scale: GS70), wheat tillers were cut at 
ground level from a 0.25  m2 area of each plot. The sample 
was oven-dried at 60 °C for 72 h and then dried biomass 
was weighted and converted to g  m−2. Spikes were sepa-
rated from stem and leaves, weighed, and converted to 
spike dry matter  m−2 at A + 7d. Traits such as GN, GY, 
TGW, and HI were recorded at physiological maturity 
(Zadoks scale: GS90). Days to physiological maturity were 
taken for each plot when 50% of the peduncle turned yel-
low. At physiological maturity, plants from a 0.25  m2 plot 
area were harvested and threshed. Grain in each plot was 
weighed and converted to g  m−2. Thousand-grain weight 
(TGW) was obtained by weighing 1,000 kernels counted 
in a seed counter (Seedburo Equipment Co., Chicago, 
IL). GN was calculated by dividing grain yield  m−2 by 
mean grain weight (TGW/1000). HI was measured as 
the ratio of grain yield  m−2 to above-ground dry biomass 
 m−2. Likewise, GY was measured in kg  ha−1 as the total 
grain weight per plot divided by the plot area adjusted to 
12% moisture. FE was calculated as a ratio of GN  m−2 at 
maturity to spike dry weight  m−2 at A + 7d and expressed 
as grain numbers per gram of spike dry weight at A + 7d.

A sub-set of 10 genotypes from the panel used in 
Experiment I were evaluated for non-grain spike par-
titioning (Experiment II) at PSREU, Citra, Florida in 
the 2017–2018 and 2018–2019 growing seasons, and at 
NFREC, Quincy, Florida in 2017–2018 growing season 
(similar seed rate and plot size). The experiments used 
a randomized complete block design (RCBD) with 3 
replications and the same agronomic and management 
practices as described in Experiment I. Seven spikes 
were randomly selected from each plot at harvest and 
separated into different spike parts (awns, rachis, glume, 
lemma, palea, and infertile floret). The dry weight (DW) 
of total spikes and each of the spike parts and grains 
were also measured to calculate the partitioning of each 
part. The awn partitioning index (API) was calculated as 
(DW of awns)/ (DW of total spike—grain DW). Similarly, 
rachis, glume, lemma, palea, and infertile floret partition-
ing indices were calculated as the DW of the respective 
spike part divided by the DW of the non-grain spike cal-
culated as the difference of total spike DW and grain DW.

A validation panel consisting of two diversity popu-
lations of 178 facultative lines and 59 spring lines was 
planted during 2018–2019 season to validate KASP mark-
ers (Experiment III). The populations were planted at the 
Plant Science Research and Education Unit (PSREU) in 
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Citra, Florida. A randomized augmented design with three 
repeated checks (“AGS 2000”, “SS8641”, and “Jamestown”) 
was used for the experiment.

Genotyping and KASP marker development
Detailed description of the methodologies for genotyping 
have been provided previously [32]. In brief, high-qual-
ity DNA was extracted from freeze-dried, powdered leaf 
tissue obtained from 2-week-old plants using modified 
CTAB (cetyltrimethylammonium bromide) protocol and 
genotyping-by-sequencing (GBS) library was constructed 
using two restriction enzymes, MspI and PstI-HF [64]. 
SNPs were called using the TASSEL v5.0 GBS v2.0 dis-
covery pipeline [65] and the IWGSC RefSeq v1.1 refer-
ence genome [66].

Significant SNPs identified from GWAS were selected 
for the development of KASP markers. Primers for KASP 
were designed based on the sequences flanking the SNPs 
in the Chinese Spring reference genome RefSeq v1.0 
(IWGSC 2018) using PolyMarker (http:// www. polym 
arker. info/), which considers the polyploid nature of mul-
tiple homologs. Designed primer sequence was searched 
in entire genome to remove possible duplication and only 
the markers that showed clear cluster separation between 
two alleles were selected. The KASP assays were carried out 
in a GeneAmp™ PCR System 9700 Fast Thermal Cycler at 
USDA-ARS Central Small Grain Genotyping Lab, Manhat-
tan, Kansas. A 5 µL of KASP PCR mix composed of 1.94 
µL of 2 × PACE Genotyping Master Mix (https:// 3crbio. 
com/), 0.06 µL primer mix, and 3 µL DNA at 10–20 ng/µl. 
Amplification of PCR began with a denaturation of 94  °C 
for 15 min, followed by 10 touch-down PCR cycles at 94 °C 
for 20 s and 67 °C for 60 s with −1.0 0C/cycle, and then 32 
cycles at 94 °C for 20 s and 57 °C for 60 s.

Phenotypic data analysis
Analysis of variance (ANOVA) was performed using the 
“lme4” package [67] in R software (v3.5.1, R Development 
Core Team). Best linear unbiased estimates (BLUEs) were 
calculated for each environment separately as well as across 
all environments. In the analysis, the genotypic effects were 
considered fixed, while all the other effects were regarded 
as random. All traits were adjusted using days to anthesis as 
a covariate. The following model applied to individual envi-
ronments for experiment I and III.

For combined data across environments, the following 
model was used.

Yijkl = µ+ Bi + IDj +Gk + Cl + εijkl

Yijk = µ+ I+G+ C+ Ei + I × Ei +G × Ei + C × Ei + Bk(Ei )+ εijk

where Y is the trait of interest; μ is the effect of the 
mean; G corresponds to the un-replicated genotypes; C 
is the effect of the replicated checks on each block;  Ei 
is the effect of the ith environment, and I is the effect 
of the identifier of the checks. I ×  Ei, G ×  Ei, and C ×  Ei 
are the effects of the check identifier by environment, 
genotype by environment, and check by environment 
interactions, respectively;  Bk(Ei) is the block effect 
nested within each environment; and ε is the standard 
normal error [68].

To estimate BLUEs for experiment II (RCBD), the fol-
lowing model was used for individual environments.

The following model was used for combined 
environments.

where the phenotypic response  (Yijk) is a function of 
the overall mean (µ),  jth genotype  (Gi),  ith environment, 
genotype-environment interaction ( G× Ei ),  Bk(Ei) is 
the block effect nested within each environment, and ε 
is the standard normal error.

Broad-sense heritability was calculated using the fol-
lowing formula:

where H2 is the broad-sense heritability estimate, σ2G 
is the genetic variance, σ2GXE is the genotype by envi-
ronmental variance, σ2e is the residual variance, n is 
the number of environments, and r is the number of 
replications.

Pearson’s correlation among traits was computed 
using the “corrplot” package in R [69]. A PCA biplot 
was created with the “factoextra” package in a R [70]. 
Additionally, path coefficient analysis was conducted 
in R using the “lavaan” package [71]. In the first analy-
sis, GN, FE, and TGW were used as predictors whereas 
HI was designated as a response. To estimate the direct 
and indirect effects of different traits on FE, glume par-
titioning index (GPI), lemma partitioning index (LmPI), 
awn partitioning index (API), palea partitioning index 
(PPI), floret partitioning index (FPI), and rachis par-
titioning index (RPI) were designated as predictors 
whereas FE was designated as a response.

Yijk = µ++Gj +Bk + εijk

Yijk = µ+ Ei +Gj +G× Ei + Bk(Ei )+ εijk

H
2
=

σ
2G

σ2G+
σ2G×E

n +
σ2e
nr

http://www.polymarker.info/
http://www.polymarker.info/
https://3crbio.com/
https://3crbio.com/
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Genome‑wide association study and gene annotation
The compressed mixed linear model (CMLM) of the 
genome association predicted integrated tool (GAPIT) 
in R [72] was used to identify the associations between 
phenotypic and genotypic data. A GWAS was performed 
using adjusted means (BLUEs) from the dataset collected 
from Citra (2017–2018) [E1_C18], Quincy (2016–2017) 
[E1_Q17] and Quincy (2017–2018) [E1_Q18], and com-
bined data (E1_Combined) in Experiment I. Significant 
MTAs were claimed at a threshold of FDR (p < 0.10). 
We used “cmplot” package in R to generate SNP density 
plots, Manhattan plots, and Q-Q plots. IWGSC wheat 
reference genome RefSeq v1.0 [65] was used to find can-
didate genes associated with significant MTAs. Their 
annotations were determined using the Variant Effect 
Predictor (VEP) tool in the Ensemble Plants (http:// 
plants. ensem bl. org/ Triti cum_ aesti vum/ Tools/VEP).

In the validation analysis, a student’s t-test was utilized. 
However, if non-normal residuals were observed, the 
kruskal–wallis test was employed. Differences in means 
between line groups with two or combinations of allelic 
types were computed. A KASP marker was deemed effec-
tive if there was significant mean difference between the 
contrasting allelic groups.
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